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ABSTRACT 
 

Disc brake squeal noise is a very complicated phenomenon, which automobile 
manufacturers have confronted for decades due to consistent customer complaints 
and high warranty costs. In recent years, the finite element method (FEM) has 
become the preferred method due to high hardware costs of experimental methods. 
In this study, a simplified model for the disc brake is presented using the 
ABAQUS/Standard finite element software. The analysis process uses a nonlinear 
static simulation sequence followed by a complex eigenvalue extraction to 
determine the squeal propensity. The effect of the main operational parameters 
(braking pressure, and friction coefficient) on the squeal propensity is performed. 
The influence of changing the rotor stiffness and back plates stiffness under 
different operation condition are investigated. The results of this analysis show 
that the squeal noise can be reduced by increasing the rotor stiffness and 
decreasing the back plate stiffness of the pads. 
 
Keywords: Disc brake, squeal, finite element, complex eigenvalue, parametric 

study  
 
1.0     INTRODUCTION 

 
Disc brake noise, in general, is one of the major contributors to the automotive 
industry’s warranty costs. In most cases, this type of noise has little or no effect on 
the performance of brake system. However, most customers perceive this noise as 
a problem and demand that their dealer’s fix it. Customer complaints result in 
significant yearly warranty costs. More importantly, customer dissatisfaction may 
result in the rejection of certain brands of brake systems or vehicles. The 
automotive industry is thus looking for new ways to solve this problem [1]. 
      In general, brake noise has been divided into three categories, in relation to 
the frequency of noise occurrence. The three categories presented are low-
frequency noise, low-frequency squeal and high-frequency squeal. Low-frequency 
disc brake noise typically occurs in the frequency range between 100 and 1000 
Hz. Typical noises that reside in this category are grunt, groan, grind and moan. 
This type of noise is caused by friction material excitation at the rotor and lining 
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interface. The energy is transmitted as a vibratory response through the brake 
corner and couples with other chassis components [2]. 

 Low-frequency squeal is generally classified as a noise having a narrow 
frequency bandwidth in the frequency range above 1000 Hz, but below the first in-
plane mode of the rotor. The failure mode for this category of squeal can be 
associated with frictional excitation coupled with a phenomenon referred to as 
‘‘mode locking’’ of brake corner components. Mode locking is the coupling of 
two or more modes of various structures producing optimum conditions for brake 
squeal [2]. 

 High-frequency brake squeal is defined as a noise which is produced by 
friction induced excitation imparted by coupled resonances (closed spaced modes) 
of the rotor itself as well as other brake components. It is typically classified as 
squeal noise occurring at frequencies above 5 kHz. Since it is a range of frequency 
which affects a region of high sensitivity in the human ear, high-frequency brake 
squeal is considered the most annoying type of noise. Brake squeal is a concern in 
the automotive industry that has challenged many researchers and engineers for 
years. Considerable analytical, numerical and experimental efforts have been spent 
on this subject, and much physical insight has been gained on how disc brakes 
may generate squeal, although all the mechanisms have not been completely 
understood [3]. 

 This study attempts to present a simplified finite element model to examine 
the squeal propensity of a disc brake system for a range of operational parameters 
like friction coefficient, and braking pressure. The evaluation of the effect of 
material properties (the rotor Young’s modulus and the back plates of the pads 
young’s modulus) on the squeal propensity is performed. The simulations 
performed in this study present a guideline to reduce squeal noise by using design 
modification, which dependent on the modified material prosperities of disc brake 
components.  

 
2.0  BRAKE NOISE GENERATION MECHANISMS 
 
Disc brake squeal occurs when a system experiences vibrations with very large 
mechanical amplitude. It is supposed that there are two occurrence mechanisms of 
a squeal noise. The first mechanism is a phenomenon resulting from the “stick-
slip” of a friction side [4]. The second mechanism is a phenomenon resulting from 
geometric instabilities of the brake assembly [3]. Both mechanisms, however, 
attribute the brake system vibration and the accompanying audible noise to 
variable friction forces at the pad–rotor interface. Regarding the squeal noise 
caused by geometric instability of system, if two neighboring vibration modes are 
close to each other in the frequency range and have similar characteristics, they 
may merge if the coefficient of friction between the pad and disc increases. When 
these modes coupled at the same frequency, one of them becomes unstable. The 
unstable mode can be identified during complex eigenvalue analysis [5-12] 
because the real part of the eigenvalue corresponding to an unstable mode is 
positive.  
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3.0  METHODOLOGY AND NUMERICAL MODEL 
 
3.1 Problem Formulation                                                                                
The mass matrix and stiffness matrix of engineering structures can be assumed to 
be symmetric, respectively, positive definite and semi-positive definite in general. 
The eigensolutions of such structures are extensively studied and the vibration of 
such systems is stable. There are, however, engineering problems whose stiffness 
matrices are asymmetric. Usually the asymmetry is produced not by the structure 
itself, but by some external loads interacting with the structure [15], such as 
friction in brake noise problems [13].The equation of motion for a vibrating 
system is 

 [ ]{ } [ ]{ } [ ]{ } { }FuKuCuM =++ ...                                 (1) 

where M, C and K are mass, damping and stiffness matrices, respectively, and u is 
the generalized displacement vector.  

For friction induced vibration, it is assumed that the forcing function F is mainly 
contributed to by the variable friction force at the pad-rotor interface. The friction 
interface is modeled as an array of friction springs. With this simplified interface 
model, the force vector becomes linear: 

 { } [ ]{ }uKF f=   (2) 

where, Kf is the friction stiffness matrix.  

A homogeneous equation is then obtained by combining Eqs. (1), and (2) by 
moving the friction term to the left-hand side 

 
[ ]{ } [ ]{ } [ ]{ } { }FuKKuCuM f =−++ ...   (3) 

 
Eq. (3) is now the equation of motion for a free vibration system with a pseudo 
forcing function in the stiffness term. The friction stiffness acts as the so-called 
‘‘direct current’’ spring [1] that causes the stiffness matrix to be asymmetric. 
 
3.2    Complex Eigenvalue Analysis 
The complex eigenvalue analysis made available in ABAQUS is utilized to 
determine disc brake assembly stability. The essence of this method lies in the 
asymmetric stiffness matrix that is derived from the contact stiffness and the 
friction coefficient at the disc/ pads interface [6]. In order to perform the complex 
eigenvalue analysis using ABAQUS, four main steps are required [7]. 
They are given as follows: 
 
i. Nonlinear static analysis for applying brake-line pressure. 
ii. Nonlinear static analysis to impose rotational speed on the disc. 
iii. Normal mode analysis to extract natural frequency of undamped system. 
iv. Complex eigenvalue analysis that incorporates the effect of friction coupling. 
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In this analysis, the complex eigenproblem is solved using the subspace projection 
method; thus, the natural frequency extraction analysis must be performed first to 
determine the projection subspace. The complex eigenvalue problem can be given 
in the following form: 
 
 0)( 2 =++ yKCM λλ              (4) 
 
Where M is the mass matrix, which is symmetric and positive definite; C is the 
damping matrix, which can include friction-induced damping effects as well as 
material damping contribution; K is the asymmetric (due to friction contributions) 
stiffness matrix; λ  is the eigenvalue; and y is the eigenvector. Both eigenvalues 
and eigenvectors may be complex. In the third step stated above, this system is 
symmetrized by dropping the damping matrix C and asymmetric contributions to 
the stiffness matrix sK  to find the projection subspace. Therefore, the eigenvalue, 
λ becomes a pure imaginary where ωλ i=  and the eigenproblem can be written 
as follows: 
 
 0)( 2 =+− ZKM sω     (5)      
 
This symmetric eigenvalue problem is solved using the Lanczos iteration 
eigensolver. Next, the original matrices are projected onto the subspace of real 
eigenvectors. z and given as follows: 
 

],,.........,[],.........,[ 2121
*

n
T

n zzzMzzzM =  

],,.........,[],.........,[ 2121
*

n
T

n zzzCzzzC =                    (6) 

],,.........,[],.........,[ 2121
*

n
T

n zzzKzzzK =  
 
Now the eigenvalue problem is expressed in the following form: 
 
 0)( ****2 =++ yKCM λλ                         (7) 
 
The reduced complex eigenvalues problem is then solved using the QZ method for 
a generalized nonsymmetrical eigenvalue problem. The eigenvectors of the 
original system are recovered by the following: 
 

 k
n

k yzzzY *
21 ],.........,[=                          (8) 

 
where ky  is the approximation of the k-th eigenvector of the original system. 
 
For more detailed description of the formulation and the algorithm, refer to [16]. 
The complex values λ , can be expressed as ωαλ i±=  whereα is the damping 
coefficient (real part of λ ) and ω is the damped natural frequency (imaginary 
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part of λ ) describing damped sinusoidal motion. If the damping coefficient is 
negative, decaying oscillations typical of a stable system result. A positive 
damping coefficient, however, causes the amplitude of oscillations to increase 
with time. Therefore the system is not stable when the damping coefficient is 
positive. By examining the real part of the system eigenvalues the modes that are 
unstable and likely to produce squeal are revealed. An extra term, damping ratio, is 
defined as ωα /2− . If the damping ratio is negative, the system becomes 
unstable, and vice versa.  
 
3.3    Finite Element Analysis Approach 
A commercial front disc brake system consists of a rotor that rotates about the axis 
of a wheel, a caliper–piston assembly where the piston slides inside the caliper, 
which is mounted to the vehicle suspension system, and a pair of brake pads. 
When hydraulic pressure is applied, the piston is pushed forward to press the inner 
pad against the disc and simultaneously the outer pad is pressed by the caliper 
against the disc. Numerical simulations using the ABAQUS finite element 
software package were performed in this study for a simplified version of a disc 
brake system which consists of the two main components contributing to squeal: 
the disc and the pads as shown in Figure 1. The disc has a diameter of 280 mm 
and a thickness with typical value of 10 mm and is made of cast iron. The pair of 
brake pads, which consist of contact plates and back plates, are pressed against the 
disc in order to generate a friction torque to slow the disc rotation. The contact 
plates are made of an organic friction material and the back plates are made of 
steel.  
 
 

 
                                 (a)                                                                            (b)  
 

             Figure 1: The simplified disc brake model 
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The FE mesh is generated using three-dimensional hexahedral element (C3D8 and 
C3D8I) for the disc and pads. There are about 21,700 nodes and 16,200 elements 
are used. The surface based contact interactions are defined between both sides of 
the disc as master surface and the contact plates of the pads as slave surface 
without the need for matching meshes. 
 Figure 1a, present the boundary conditions used for the model are as 
follows, the ears of the back plate were constrained in all degree of freedom 
(DOF) except the friction surface normal direction, and the rotor was constrained 
in all DOF at the bolt holes. The calliper–piston assembly is not defined in the 
simplified model of the disc brake system, hence the hydraulic pressure is directly 
applied to the back plates at the contact regions between the pads and the pistons 
as shown in Figure 1b, and it is assumed that an equal magnitude of force acts on 
each pad.  
 In the first step of the brake squeal analysis the contact between the pads 
and the rotor is established by applying pressure of a cross the back plate and a 
non-linear static analysis was performed that included both a preload step and a 
rotational velocity on the rotor step following the same methodology. Next, the 
lanczos method extracted the real eigenvalues and mode shapes of the model. 
Finally the complex modes analysis is performed on brake system model based on 
the real frequency calculated by Lanczos method. 
 
4.0  ANALYSIS OF STABILITY FOR DISC BRAKE 
  
4.1    Description of Unstable Modes of Disc Brake  
To demonstrate the squeal propensity of the disc brake, the 100 eigenvalues 
extracted between zero and 13 kHz for the base brake system with µ = 0.5 are 
plotted on the complex plane in Figure 2. In the baseline case no other sources of 
damping are specified. All of the modes have zero damping (lie on the imaginary 
axis) except where pairs of modes have become coupled and formed a 
stable/unstable pair. These result in the eigenvalue that occur in conjugate pairs 
that are symmetrically located about the imaginary axis. In this case nine unstable 
modes can be seen. An alternative way to express these results is to plot damping 
ratio vs. frequency as shown in Figure 3. The nine modes with positive real parts 
now appear with negative damping values. While there is no direct proportionality 
between squeal propensity and the level of damping coefficient, it has been 
suggested that higher values tend to be associated with modes that are most likely 
to squeal [6].  
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Figure 2: Eigenvalues extracted from the disc brake model plotted on the complex 
plane. 
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Figure 3: Damping ratio vs. frequency for the disc brake model 
 
 The results show that higher damping coefficient is approximately at 
unstable frequency 12 kHz. There is a significant pad bending vibration for these 
cases. Figure 4, gives an example of the vibration mode of the disc brake system at 
a frequency of 12 kHz. 
 
 
 
 
 



 
Jurnal Mekanikal, December 2009 

59 

 
 
 
 

 
 

Figure 4: Vibration mode of the disc brake model at 12 kHz. 
 
 

 It can be seen that the pads have serious out-of-plane modes as shown in 
Figure 4 this suggests that the brake pads may be the source of the disc brake 
squeal. Except the unstable vibration modes which occur at frequency 12 kHz and 
are caused mainly by the pads vibration, the other unstable vibration modes are 
caused mainly by the disc vibration. Figure 5 give an example of the unstable 
vibration mode of the disc brake system, where all the system parameters are the 
typical values. It can be seen that the disc has significant out-of-plane vibration 
compared with the vibration of pads. 
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Figure 5: Example of unstable modes of the disc brake model. 
 
 
5.0    EFFECT OF PARAMETERS FOR DISC BRAKE SQUEAL 
 
5.1    Variation of Friction Coefficient 
The effect of friction coefficient of the pad-rotor interface is performed. Usually, 
the analysis is performed for varying the friction coefficients from 0.1 to 0.7. With 
the low friction coefficient all of the modes of the system will be stable. As the 
friction coefficient is increased, modes can be driven closer to one another in 
frequency. At some critical friction value, a sudden change occurs (called a 
bifurcation), and a new mode exists that contains the original modes as a coupled 
pair. Figure 6a, shows results in the form of the damping coefficient as a function 
of frequency for different friction coefficients. It can be seen that the major squeal 
frequency is approximately 12 kHz. The value of the damping coefficient is 
increase significantly with an increase of the friction coefficient as shown in 
Figure 6b, at a frequency of 12 kHz. 
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Figure 6a: Unstable modes with friction coefficient varied from 0.1 to 0.7. 
  
It is understandable that with an increase in the friction coefficient, there is an 
accompanying increase in the instability of the system, thus an increase in the 
damping coefficient. This means that the most fundamental method of eliminating 
brake squeal is to reduce the friction between the pads and the disc. However, this 
obviously reduces braking performance and is not a preferable method to employ. 
 

 
Figure 6b: Variation of the damping coefficient with friction coefficient at 

frequency 12 kHz. 
 

5.2    Variation of Braking Pressure 
The effect of the braking pressure on the squeal propensity is studied by varying 
the applied pressure from 0.1 MPa to 1.5 MPa. An initial comparison of the 
eigenvalue values were performed for braking pressure. Figure 7a, shows the 
change of the damping coefficient with frequency for different braking pressure. 
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The main unstable frequency at 12 kHz was chosen for a deeper analysis, which 
has a significant effect in terms of defining the squeal propensity. Figure 7b, 
shows the variation of the damping coefficient with braking pressure at frequency 
12 kHz. Basically, the increase in braking pressure leads to a linear increase in the 
main unstable frequency. Thus the squeal propensity is increased, due to a large 
braking pressure leading to high values for contact stiffness between the pads and 
the rotor [12]. 
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Figure 7a: Unstable modes with braking pressure varied from 0.1 to 1.5 MPa. 
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Figure 7b: Variation of the damping coefficient with braking pressure at frequency 
                 12 kHz. 
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5.3    Variation of Stiffness of the Disc  
The effect of rotor stiffness in terms of Young’s Modulus is performed. The rotor 
is made of grey cast iron. The elastic modulus of cast irons varies from below 100 
GPa through to the values close to that of steel at approximately 200 GPa. Grey 
cast iron is particularly variable in properties depending upon its carbon and, to a 
lesser degree, silicon content [14]. The stiffness of the disc brake is performed by 
varying Young’s modulus of the disc from 85 GPa to 135 GPa. Where the 
baseline young’s modulus of the disc is 105 GPa. Figure 8a, Shows results of the 
damping ratio versus frequency for different Young’s modulus 85 GPa, 95 GPa, 
105 GPa, 115 GPa, 125 GPa and135 GPa.  
 It can be seen that the major squeal frequency does not change for 
different disc Young’s modulus. The value of the major squeal frequency is 
approximately 12 kHz. As Young’s modulus is increased and hence as the 
stiffness of the disc is increased, the value of the damping coefficient decreases. 
Similar evaluations have been carried out by Liu et al [11]. Figure 8b, presents the 
damping coefficient versus Young’s modulus of the disc at a frequency of 12 kHz. 
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Figure 8a: Variation of the damping coefficient with frequency for different  
 Young’s modulus of the disc. 

 
 It is found that larger disc stiffness can reduce the squeal propensity of the 
disc system. This can be looked upon as increasing the mechanical impedance of 
the rotor and therefore making it more resistive in responding to input forces and 
reduce the vibration magnitude; as a result, the squeal propensity of the disc 
system can be reduced.  
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Figure 8b: Variation of the damping coefficient with young’s modulus of 
the disc at frequency 12 kHz 

 
5.4    Variation of Stiffness of the Back Plates of the Pad 
The disc brake pads consist of two parts, friction plates which are made of organic 
material and back plates made of steel. In this study, the baseline Young’s 
modulus of the back plates of the pads is 210 GPa was varied from 190 GPa to 
230 GPa. To perform the variation of back plate stiffness on the disc squeal. 
Figure 9a, shows results of the damping coefficient versus frequency for different 
Young’s modulus. 
 It can be seen that the dominant squeal occurs at a frequency of 
approximately 12 kHz. As Young’s modulus is increased, corresponding to an 
increase in stiffness of the back plates of the pads, the value of the damping 
coefficient increases significantly as shown in Figure 9b, the variation of the 
damping coefficient with Young’s modulus of the back plates at the main 
frequency is shown. This important observation implies that the stiffer back plates 
of pads cause a higher squeal propensity. This is so since the friction material 
connected to the back plates is very soft compared with the back plate material. 
Hence the higher the stiffness of the back plates, the greater the uneven 
deformation and vibration magnitude of the pad, and hence the higher the damping 
coefficient. Thus, an effective method to reduce squeal propensity of disc brake 
system is to use a soft material for the back plates of the pads. 
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Figure 9a: Variation of the damping coefficient with frequency for different 
young’s modulus of the back plates of the pads. 
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Figure 9b: Variation of the damping coefficient with young’s modulus of 
the back plates of the pads at frequency 12 kHz. 

 
6.0    CONCLUSION 
 
Friction-induced disc brake squeal is investigated using the ABAQUS/Standard 
finite element software, which combines a nonlinear static analysis and a complex 
eigenvalue extraction method. The nonlinear effects can be taken into account in 
the preloading steps in order to more accurately friction-induced damping taken 
into account at which a complex eigenvalue analysis is performed. The parametric 
analysis shows that significant pad bending vibration may be responsible for 
causing the disc brake squeal and the major squeal frequency is approximately 12 
kHz for the present disc brake system. The effects of the friction between the pads 
and the disc, the stiffness of the disc, and the stiffness of the back plates of the 
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pads on disc squeal are significant, but the effects of the hydraulic pressure on disc 
squeal are not obvious. Parametric study shows that, if the Young’s modulus of 
the disc is larger, the system is more stable, and, if the Young’s modulus of the 
back plate of the pads is larger, the system is more unstable. 
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