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ABSTRACT 
 
Development of secondary flow in curved rectangular regular section duct using 
an improved finite difference scheme for solving parabolized Navier-Stokes 
equations is presented.  This scheme has its origin in the work of Briley, which is 
based on ADI method to march the solution in the streamwise direction. With 
some modifications, it is shown in the present work that the stability of this scheme 
is greatly enhanced. Its applicability is considerably increased. To demonstrate 
the strength of the improved scheme, it is used to predict the flows in both mildly 
and strongly curved ducts for moderate to high Dean number. Predictions 
obtained with the improved scheme show good agreement with the available 
experimental and computational data. 
 
Keywords: Secondary flow, curved rectangular duct, parabolised Navier-Stokes   
 
1.0 INTRODUCTION 
 
The use of parabolized Navier-Stokes (PNS) equations to model internal flow 
problems has been gaining momentum. The main advantage of using PNS 
equations to simulate incompressible viscous flows is the suppression of elliptical 
behavior in the streamwise direction of the flow wherein the governing equations 
become parabolic in this direction. Thus, these equations are solvable by space-
marching techniques, saving considerable storage and computational time.   

The potential of PNS equations in predicting laminar flow in a curved circular 
pipe was tapped by Patankar et al. [1] using the scheme of Patankar and Spalding 
[2]. Their predictions show a very satisfactory agreement with the available 
experimental data of Mori and Nakayama [3] and Austin [4] and the theoretical 
solution of Akiyama and Cheng [5]. Thereafter, a number of investigators has 
followed the works of Patankar et al. [1] and even extended the use of PNS 
equations to developing flow in curved rectangular ducts. 

Initial investigation on developing flow in a curved rectangular duct is 
attributed to Ghia and Sokhey [6]. By adopting Briley’s [7] scheme, they obtained 
the solutions in ducts of 0.0100≤HD/Ro≤0.2857 (HD and Ro are the hydraulic 
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diameter and the mean radius of curvature of the duct respectively) for 51 ≤ De ≤ 
350 where the Dean number is defined as 
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On the other hand, Govindan and Lakshminarayana [8] computed the 

developing flow in a curved duct of HD/Ro=0.0690 for De=54 using a newly 
developed space-marching scheme. However, Humphrey et al. [9] is of the 
opinion that PNS equations are good approximation only for curved ducts with 
small curvature ratio, HD/Ro.  For strongly curved ducts, they advocate the use of 
partially PNS equations suggested by Pratap and Spalding [10].  With this 
approximation, Humphrey et al. [9] computed the developing flow in a curved 
square duct of HD/Ro=0.4348 for De=520.  It was later that Pouagare and 
Lakshminarayana [11] demonstrated the applicability of PNS equations in 
predicting developing flow in strongly curved ducts.  Their solution for the case of 
HD/Ro=0.4348 for De=520, as computed by Humphrey et al. [9], is in good 
agreement with the experimental data of Taylor et al. [12].  

In the present study, the work of Ghia and Sokhey [6] on developing flow in a 
curved rectangular duct has been reproduced first.  It is found that the scheme of 
Briley [7] is liable to numerical instability and at times even leads to divergent 
results when computations were made for either strongly curved ducts (HD/Ro > 
0.2857) or for the case of De ≥ 300.  Furthermore, it was discovered in the work of 
Yap [13], in which the scheme of Briley was used to simulate flows in a curved 
converging rectangular duct that numerical instability occurred even for duct with 
the slightest contraction. Thus, it is the intention of the present study to improve 
the stability of Briley’s scheme through some modifications, paving the way for 
solving the PNS equations for flows in a curved converging rectangular duct.  In 
order to demonstrate the potential and applicability of the modified scheme of 
Briley, the present study has extended the work of Ghia and Sokhey to the case of 
strongly curved ducts and of De > 350, cases where the original scheme of Briley 
is found insufficient. It will be shown that the present scheme is capable to 
produce results that are in good agreement to that of Rosenfeld et al. [14], Arnal et 
al. [15], Zang et al. [16] and Tamamidis et al. [17], some recent numerical 
solutions for fully elliptic Navier-Stokes equations.  
 
2.0 MATHEMATICAL FORMULATION 
 
2.1 Governing Equations 
The geometry of a curved rectangular duct as depicted in Figure 1 can be 
conveniently represented in cylindrical coordinate (R, θ, Z). PNS equations are 
derivable from the Navier-Stokes equations by omitting the diffusive terms in the 
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streamwise direction together with the decoupling of the pressure term into an 
average pressure (Pθ(θ)) and a transverse pressure distribution (Prz(R,Z;θ)) as 
documented in Tannehill et al. [18]. It should be noted that Prz is a mild function 
of θ such that ∂Prz/∂θ is negligible. Thus, the static pressure, P, is the sum of Pθ 
and Prz. 
 
 rzPPP += θ  (2) 
 
Since θ-direction is the streamwise direction, the governing PNS equations should 
read: R-momentum: 
 

  (3a) 
θ-momentum: 
  

  (3b) 
Z-momentum: 
  

  (3c) 
and the continuity equation: 
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It can be seen that there are five unknowns: the velocities components Ur, Uθ, Uz, 
Pθ and the pressure, Prz, in Equations (3) and (4), therefore insufficient for a 
solution to be determined uniquely.  To close this void in the system, an additional 
equation is derived by considering the mass flow rate at any given cross section of 
the duct and its numerical value ought to be constant, or mathematically as 
 

 ∫∫ =ρ θA
constantdAU  (5) 
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Figure 1: A curved rectangular duct and the adopted coordinate system 
 
2.2 Initial and Boundary Conditions 
For parabolic-flow approximation that is characterized as an initial-value problem, 
the velocity components and pressure at the duct inlet need to be specified. The 
boundary conditions at the duct outlet (θ=180°) are not required due to the 
parabolic nature of the governing equations. It is assumed that a uniform 
streamwise velocity component and a uniform pressure are applied at the inlet of 
the duct. Besides, the transverse velocity components at the inlet are assumed to 
be zero. Explicitly, at the duct inlet (θ = 0°): 
 

 oUU =θ  (6a) 
 

 0UU zr ==  (6b) 
 

 inPP =θ  (6c) 
 

 0Prz =  (6d)  
 
Alternatively, fully developed velocity profiles and pressure can be applied at the 
duct inlet, utterly depending on the desired type of inlet boundary conditions.  At 
the duct wall (R=±a or Z=±b) for all θ, no slip condition is applied,  
 

 0UUU zr === θ  (6e) 
 
3.0 SOLUTION PROCEDURE 
 
3.1 Discretization 
The domain of interest is discretized by grid points of spacing ∆R in the R-
direction, ∆θ in the θ-direction and ∆Z in the Z-direction.  i, n and k are indices 
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associated with R, θ and Z, respectively.  With the utilization of ADI method, the 
limit of the streamwise step size, ∆θ, is increased considerably. 
 
3.2 The Scheme of Briley [7] 
Since these equations have be made parabolic with respect to the streamwise 
direction, θ-direction, a solution at a given (θ+∆θ)-station ((n+1)-station) can be 
advanced from the known solution at θ-station (n-station) based on an alternating-
direction implicit (ADI) method as given in Ames [19] and Lam [20].  Two 
Poisson equations with Neumann boundary conditions are required to be solved 
for each station, one to ensure the computed velocity components satisfy the 
continuity equation while the other is the pressure-Poisson equation.   

There are four major steps in the scheme of Briley [7].  Quoting from his 
original paper, the procedure is as follows; 
 

(i)  The streamwise velocity, 1n
j,i)U( +

θ  is computed by solving the streamwise 
momentum, Equation (3b) and the global mass flow relation, Equation (5), 
with (Pθ)n+1 determined implicitly through standard secant iteration 
technique.  

(ii)  Solve the transverse momentum equations, Equations (3a) and (3c), yielding 
approximated values of 1n

j,ir )U( +  and 1n
j,iz )U( + , these approximated values 

of the transverse velocity components are denoted by j,irp )U(  and j,izp )U(  
respectively.   

(iii) Small corrections for the transverse velocity components, j,irc )U(  and 

j,izc )U(  are computed from the requirement that the resulted transverse 
velocity components satisfy the continuity equation, Equation (4).  Thus, the 
transverse velocity components are given by 

 
 j,ircj,irp

1n
j,ir )U()U()U( +=+  (7a) 

 
 j,izcj,izp

1n
j,iz )U()U()U( +=+  (7b) 

 

 (iv)  1n
j,irz )P( +  is calculated by solving a Poisson equation that is derived from the 

transverse momentum Equations (3a) and (3c), which are evaluated using 
the corrected values of 1n

j,ir )U( +  and 1n
j,iz )U( + .   

These four steps are then repeated for the following stations. 
 
3.3 Details of Solution Procedure 
In step (iii), the velocity corrections, j,irc )U(  and j,izc )U(  are determined by 
introducing a velocity potential such that:  
  

 
R

RU rc ∂
φ∂

=  (8a) 
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Z
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A Poisson equation can be formed by substituting Equation (7) and (8) into 
Equation (4). 
 

 C2

2

2

2
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 (9) 

 
Since a velocity potential, φ, is introduced, the boundary conditions for Equation 
(4) change from the Dirichlet type to the Neumann type. Bearing in mind that the 
velocity corrections are zero at the wall, the normal derivatives of φ at the wall 
would also be zero, or mathematically: 
 

 )a,aR(,0
Z

−==
∂
φ∂

 (10a) 

 

 )b,bZ(,0
R

−==
∂
φ∂

 (10b) 

 
The solution of Neumann-Poisson problem requires extra attention for 

Equation (9) only has a solution to an additive constant if a compatibility 
condition, Equation (11), relating the source term, Sc, and the derivative boundary 
condition is satisfied as in Berg and Mcgregor [21]: 

 

 ds
n

dAS
CA C ∫∫∫ ⎭

⎬
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=  (11)  

 
For the present problem, this compatibility condition is not satisfied automatically.  
To rectify this, the error distribution method of Briley [7] which forces the source 
term of (9), SC, to satisfy the integral constraint, Equation (11) will be adopted in 
the present study. The quantity E is defined by: 
 

 dAS
A
1ds

nA
1E

A CC ∫∫∫ −
⎭
⎬
⎫
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⎨
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∂
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=  (12) 

 
is added to the source term, SC.  This new source term will be called modified 
source term and is designated as SCM: 
 

 dAS
A
1ds

nA
1SS

A CCCCM ∫∫∫ −
⎭
⎬
⎫

⎩
⎨
⎧
∂
φ∂

+=  (13) 

 
Having modified the source term in Equation (9), it is more appropriate to write  
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Meanwhile, in step (iv), the pressure-Poisson equation is formed by differentiate 
Equation (3a) with respect to R and Equation (3c) with respect to Z, and adding 
the resulted equations together: 
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Similar to that of Equation (9) and Equation (10) is subjected to Neumann 
boundary conditions.  Thus, modification on the source term, Sp, is made. 
 
3.4  Modifications on the Scheme of Briley 
Instead of standard secant method, (Pθ)n+1 determined implicitly through Bisection 
Method as in Mathews [22]. It is the experience of the present authors that those 
more effective schemes such as secant iterative method would occasionally fail to 
converge to the desired accuracy with the magnitude of the error oscillating 
between some values. 

With the modification on the source term SC, the original continuity (Equation 
4) would possess a small mass source of S: 

 

 ( ) ( ) ( ) SU
Z
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R
1RU
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1
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+
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+
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The average value of S at a given θ, designated as Save, serves as a convenient 
parameter to compare the accuracy of different solutions.      

In order to increase numerical stability and attain higher accuracy, it is of great 
essence to minimize the magnitude of S. This is done through multiple corrections 
to the velocity field instead of just one correction as in Briley’s [7] work. After 
obtaining the velocity correction, Urc and Uzc, they are added to the predicted 
velocity, Urp and Uzp, as the newly predicted velocity to be corrected, 
mathematically as: 
 

 rcrpnewrp UU)U( +=  (17a) 
 

 zczpnewzp UU)U( +=  (17b) 
 

Corrections are done until the difference in the value of S for two successive 
corrections is less than a predefined value. It is possible to reduce the 
computational effort and time if in solving for Urc and Uzc via Neumann-Poisson 
Equation (14), only a few iterations are performed.  It is this modification that 
greatly increases the stability of the scheme, enabling computations be made for 
strongly curved ducts and curved converging ducts.  
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4.0 RESULTS AND DISCUSSIONS 
 
In this section, comparisons are made with the available computations and 
experimental data, in order to verify the present scheme. Computations have been 
made on ducts of 0.01 ≤ HD/Ro ≤ 0.50 and 0.67 ≤ γ ≤ 1.5 for De covering the range 
of 10 ≤ De ≤ 1768, far higher that those computed by Ghia and Sokhey [6] whom 
used the original scheme of Briley [7]. For these computations, the average error 
(Save) is well contained in the magnitude of 10-4. To the best of our knowledge, 
computational and experimental data for developing flow in strongly curved ducts 
is only available for De up to 520, rendering comparison impossible for higher De 
flow. Therefore, the present study will make use of the available data of the case 
of De = 520 for a duct of HD/Ro = 0.4348 rigorously. However, for ducts of 
smaller curvature ratio, De up to 764 has been computed, attributed to Arnal et al. 
[5], for a duct of HD/Ro = 0.2981. Comparison with their results would serve as an 
extra mean to validate the present scheme. 
 To facilitate the interpretation of the numerical results, graphs are plotted with 
the following normalization: 
 

 
a
R*r =  (18a) 

 

 
b
Z*z =  (18b) 

 
A typical case of De=54 along a duct of HD/Ro=0.0690 and γ=1 under uniform 
entry conditions, on a (21x64x21) mesh will be considered first. The development 
of the streamwise velocity (Uθ/Uo) along z*=0 and r*=0 is given in Figure 2a and 
Figure 2b respectively with the computations of Ghia and Sokhey [6] and 
Govindan and Lakshminarayana [8] superimposed. It is clear that the induced 
centrifugal force distorts the symmetrical flow along the line z*=0, shifting the 
region of maximum velocity towards the outer wall of the duct. On the other hand, 
the velocity profile remains reasonably symmetrical as it should because heat 
transfer and gravitational force are not considered. From these figures, it can be 
observed that the present computation is in fact in good agreement with that of 
Ghia and Sokhey [6] and Govindan and Lakshminarayana [8]. The present 
computation suggested that fully developed flow is achieve around θ=100° well in 
agreement with that of θ=103° predicted by Ghia and Sokhey [6]. Figure 2c shows 
the secondary velocity profiles for fully developed flow together with the results 
of Ghia and Sokhey [6] and Govindan and Lakshminarayana [8], and it is obvious 
that both qualitative and quantitative agreement is attained.   
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Figure 2a: Development of the streamwise velocity profile for De=54  
 and Re=206 along a duct of HD/Ro=0.0690 and γ=1 along z*=0 

 
 

 

 
 
Figure 2b: Development of the streamwise velocity profile for De=54 and 
 Re=206 along a duct of HD/Ro=0.0690 and γ=1 along r*=0 

 
 
 

[6] 
[8]
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Figure 2c: Fully developed secondary velocity profiles for De=54 and 
 Re=206 along a duct of HD/Ro=0.0690 and γ=1 

 
For higher De but smaller HD/Ro, another case in which Dean instability is 

found to occur, according to Ghia and Sokhey’s [6] computation, was computed.  
For this particular case, De=142 along a duct of HD/Ro=0.0274 and γ=1 subjected 
to uniform entry conditions on a mesh of (21 x 64 x 21) grid points. The second 
vortex pair starts to make its appearance at θ=46° at the region near the outer wall 
of the duct as shown in Figure 3a. This additional vortex pair is seen to be gaining 
strength, pushing the fluid particles near from outer wall towards the inner wall.  
This would in turn shift the region of maximum streamwise velocity towards the 
inner wall as depicted in Figure 3b. Such action of the second vortex pair would 
render the formation of two region of maximum streamwise velocity (the one in 
the lower portion of the duct is shown in Figure 3c). From Figure 3c, it is noticed 
the strength of the second vortex pair can grow to a magnitude comparable to the 
primary vortex pair, influencing the flow field significantly. The secondary 
velocity profiles for fully developed flow are compared with that of Ghia and 
Sokhey [6] in Figure 3d where good agreement is attained.  
 
  

[6] 
[8]
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Figure 3a: Contour plots of Uθ/Uo and secondary velocity vectors plots for 
 De=142 along a duct of HD/Ro=0.0274 and γ=1 at θ=46°, θ=52°  
 and θ=63° 

 

 
 
Figure 3b: Contour plots of Uθ/Uo and secondary velocity vectors plots for 
 De=142 along a duct of HD/Ro=0.0274 and γ=1 at θ=63°, θ=72° 
 and θ=83° 



 
 
Jurnal Mekanikal, December 2008 
 

12 

 

 
 
Figure 3c: Contour plot of Prz/(ρUo

2) and Uθ/Uo and secondary velocity 
vectors plot for De=142 along a duct of HD/Ro=0.0274 and 

 γ=1 for fully developed flow 
 

 
 

Figure 3d: Fully developed secondary velocity profiles for De=142 
 along a duct of HD/Ro=0.0274 and γ=1 

 

[6]
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For those cases discussed, HD/Ro and De remain small. For higher HD/Ro and 
De, Humphrey et al. [9] studied, both experimentally and numerically (using 
PPNS equations), the developing flow through a highly curved 90° bend of 
HD/Ro=0.4348 and γ=1 for De=520 with a fully developed flow profile (for 
straight duct) at the duct inlet. Later, Taylor et al. [12] measured the flow 
parameters for the same case.  According to Humphrey et al. [9] and Taylor et al. 
[12], for large value of HD/Ro, the use of PNS equations to approximate the flow 
becomes inadequate since the transverse pressure, Prz, is no longer a mild function 
of the streamwise coordinate, θ, for such a geometry. Both advocate the use of 
PPNS equations instead of PNS equations. However, it will be demonstrated here 
that the use of PNS equations could produce equally accurate results. 

The streamwise velocity contour at the duct inlet for both the present 
computation and Humphrey et al. is shown in Figure 4a, which are almost the 
same. The present computation is done on a mesh of (41x32x41) grid points.  To 
obtain the boundary condition at the duct inlet, the PNS equations for the viscous 
incompressible flow along a straight duct are solved for the fully developed flow.  

With reference to Figure 4b and Figure 4c, the present computation predicts the 
maximum Uθ/Uo would drop to around 1.9 for θ=30° and 1.7 for θ=60°, far higher 
than the prediction of 1.7 and 1.5 by Humphrey et al.’s computations.  However, 
the measurements of Humphrey et al. [9] do not indicate such drastic drop of 
streamwise velocity.  The maximum Uθ/Uo only drops to around 1.7 at θ=60° 
(Figure 4d), similar in magnitude with the present prediction.  At θ=60°, where 
both experimental and numerical data of Humphrey et al. are available (Figure 4c 
and Figure 4d), observation shows that the structure of the streamwise velocity 
contour of the present computation is in a better agreement, both qualitatively and 
quantitatively, with the measurements of Humphrey et al.  

The contour plots of Uθ/Uo at θ=90° are shown in Figure 4e and Figure 4f. At 
first glance, these figures reveal good agreement between the present computation 
with the computation and measurement of Humphrey et al. [9] for the outer half of 
the duct (0≤r*≤1, -1≤z*≤1). The computation and measurement of Humphrey et 
al. suggest the maximum value of Uθ/Uo reduces to 1.6 and 1.7 respectively, 
comparable to the magnitude of 1.6 to 1.7 of the present computation. On the 
otherhand, for the inner half of the duct (0≤r*≤1, -1≤z*≤1), Humphrey et al.’s 
computation suggests a far simpler Uθ/Uo contour than their very measurements.  
The perplexing structure of the Uθ/Uo contour for this portion of the duct, revealed 
by Humphrey et al.’s measurements, is captured by the present computation.  It 
will be shown later that with such intricate feature of the Uθ/Uo contour in the 
flow, the secondary flow would be rather complex, consisting of several vortex 
pairs. 

As expected, the structure of the secondary flow for such high De along a 
highly curved duct is very complex, consisting of more than two vortex pairs. In 
the present computation, four vortex pairs as depicted by the secondary velocity 
vectors plot in Figure 4j are captured. In the work of Rosenfeld et al. [14], Zang et 
al. [16] and Tamamidis et al. [17], three vortex pairs are observed at θ=90°, 
instead of four pairs. These three major vortex pairs are well predicted both in 
terms of location and strength in the present study. However, if the secondary 
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velocity vectors plots of Rosenfeld et al. [14] and Zang et al. [16] are scrutinized, 
it seems that there is one additional small vortex pair at the region near r*=-1, 
z*=0. The present authors are convinced that if their computations were conducted 
on a finer mesh, they were able to capture this small vortex pair properly. 
 
 

 
 

Figure 4a: Contour plots of Uθ/Uo for De=520 along a duct of HD/Ro=0.4348 
 and γ=1 at θ=0° together with Humphrey et al. [9] computation 

 

 
 

Figure 4b: Contour plots of Uθ/Uo for De=520 along a duct of HD/Ro=0.4348 
 and γ=1 at θ=30° together with Humphrey et al. [9] computation 
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Figure 4c: Contour plots of Uθ/Uo for De=520 along a duct of HD/Ro=0.4348 
 and γ=1 at θ=60° together with Humphrey et al. [9] computation 

 

 
 
Figure 4d: Contour plots of Uθ/Uo for De=520 along a duct of HD/Ro=0.4348  
 and γ=1 at θ=60° together with Humphrey et al. [9] measurements 
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Figure 4e: Contour plots of Uθ/Uo for De=520 along a duct of HD/Ro=0.4348 
 and γ=1 at θ=90° together with Humphrey et al. [9] computation 
 

 
 
Figure 4f:  Contour plots of Uθ/Uo for De=520 along a duct of HD/Ro=0.434 
 and γ=1 at θ=90° together with Humphrey et al. [9] measurements 
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Figure 4g: Secondary velocity vectors plot for De=520 along a duct 
 of HD/Ro=0.4348 and γ=1 at θ=90° 
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In another study, Arnal et al. [15] computed the solution for De=764 along a 
curved duct of HD/Ro= 0.2981. Figure 5a shows the streamwise velocity contour 
and the secondary velocity vectors plots for their computation at θ=45°. From this 
figure, it can be seen that the streamwise velocity predicted in the present 
computation is in a remarkable agreement with that of Arnal et al. both in terms of 
magnitude and the contour structure. The only discrepancy is that Arnal et al. 
predicts the maximum value of Uθ/Uo to be around 1.7 whereas for the present 
study, it is around 1.8. The structure of the secondary flows predicted in the 
present study and that of Arnal et al. are identical, i.e. consist of one vortex pair. 
However, at θ=135° (Figure 5b), the agreement between the present study with 
that of Arnal et al. is not as good as at θ=45°. There is a significant difference in 
the structure of the computed secondary flow. Nevertheless, the structure of the 
Uθ/Uo contours predicted in each study are almost the same. It is most unfortunate 
that experimental data of Arnal et al. at θ=135° is not present in their papers, thus, 
a more conclusive statement cannot be made regarding accuracy of both 
computations and the encountered discrepancy. 
 

 
 
Figure 5a: Contour plots of Uθ/Uo and secondary velocity vectors plots  
 for De=764 along a duct of HD/Ro=0.2981 at θ=45° 
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Figure 5b: Contour plots of Uθ/Uo and secondary velocity vectors plots  
 for De=764 along a duct of HD/Ro=0.2981 at θ=135° 

 
Based on the validation done, especially the last case considered, it is deducible 

that PNS equations are sufficient for approximating flow in highly curved ducts 
for high De, given their capability to capture the complex secondary flow.  
Besides those discussed cases intended for the validation of the present study, 
computations were also made for flow of higher De.  A typical case of De = 1768 
along a duct of HD/Ro= 0.5 and γ=1 on a mesh of [41x65x41] grid points under the 
influence of uniform streamwise velocity and pressure at the inlet was computed.  
Figure 6 shows the contour plots of Uθ/Uo and secondary velocity vectors plots for 
six succesive θs. The region of maximum Uθ/Uo is in fact very low, around 1.3 at 
θ=180°, which is an indication of developing flow. Obviously, the flow would 
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required a much larger θ to achieve fully developed flow and possibly would 
never attain it physically unless finite pitch is introduced to the duct. The 
secondary flow structure is excessively intrisic, consisting of more than two vortex 
pairs. The center of the primary vortex is located very near the inner wall as at 
θ=60° and θ=90° in Figure 6. Several secondary vortex pairs start making their 
appearance for θ>90°, distorting the structure of the primary vortex pair 
considerably.     
 
5.0 CONCLUSION 
 
The numerical results should the parabolised Navier-Stokes is able to appreciate 
secondary flow in curved rectangular regular ducts. The numerical results show 
good agreements with the experimental results performed by researchers in the 
field of secondary flow. The numerical stability as experienced by Briley, W.R. 
[7] is fully eliminated in the present study.  
 

 
 
Figure 6:  Contour plots of Uθ/Uo and secondary velocity vectors plots for 

De=1768 along a duct of HD/Ro=0.5 and γ=1 at θ=30°, 
θ=60°,θ=90°, θ=120°, θ=150° and θ=180° 
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