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ABSTRACT 
 
In this paper, the thermal lattice Boltzmann method (LBM), a numerical tool 
based on particle distribution function is used to simulate steady state thermal 
fluid flow problems and compared with the established CFD tools; FLUENT. At 
low Rayleigh number simulation, D2Q9 lattice model was coupled with the 
simplest D2Q4 lattice model to represent density and internal energy density 
distribution function respectively. While at high Rayleigh number simulation, 
D2Q9 lattice model was used for both density and internal energy distribution 
functions. Simulation of natural convection of air in a rectangular enclosure with 
localized heating from below and symmetrical cooling from the sides was carried 
out. The paper demonstrates that the lattice Boltzmann model is a promising 
simulation tool for the simulation of natural convection heat transfer phenomena 
within a wide range of Rayleigh number values. 
 
Keywords: Lattice Boltzmann, natural convection, internal energy distribution 

function 
 
1.0 INTRODUCTION 
 
For more than a decade, lattice Boltzmann method (LBM) has been demonstrated 
to be a very effective numerical tool for a broad variety of complex fluid flow 
phenomena that are problematic for conventional methods [1, 2, 3]. Compared 
with traditional computational fluid dynamics, LBM algorithms are much easier to 
be implemented especially in complex geometries and multi component flows [4]. 
Historically, LBM was derived from lattice gas (LG) automata [5]. It utilizes 
particle distribution function to describe collective behaviors of fluid molecules. 
The macroscopic quantities such as density, velocity and temperature are then 
obtained through moment integrations of distribution function.  

Generally, there are three types of thermal lattice Boltzmann models have been 
proposed; multi-speed model [6], passive scalar model [7] and double-distribution 
function (DDF) model [8]. Among these models, the DDF model is reported to be 
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the most stable [9] and widely used in simulating thermal fluid flow problems 
[10,11]. The DDF model, used in this research, is based on the work of He et al. 
[8] and Luo and He [12]. This model introduces an internal energy density 
distribution function in order to simulate the temperature field. It has been shown 
that this model is simple and applicable to problems with different Prandtl 
numbers. More importantly, this model requires low order moment and thus 
provides higher numerical stability than the multi-speed and passive-scalar models. 
In order to verify the proposed model with different microscopic velocity, a 
natural convection of air in a rectangular enclosure with localized heating from 
below and symmetrical cooling from the sides was considered. The CFD software, 
FLUENT version 6.1 was used to simulate a similar problem in order to compare 
the proposed approach. 
 
2.0 DOUBLE-POPULATION FUNCTION THERMAL LBM 
 
The governing equations of the DDF thermal LBM are [8] 
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where the density distribution function f = f (x,c,t) is used to simulate the density 
and velocity fields, and the internal energy density distribution function g = g 
(x,c,t) is used to simulate the macroscopic temperature field. c in Equation (1) and 
Equation (2) is the microscopic velocity, Ω is the collision term and Ff is the 
external force. The original version of collision term was very complicated. One 
needs to apply the probability function in order to predict the direction of each 
particle distribution function after the collision process at each node. In 1954, 
Bhatnagar-Gross-Krook [13] proposed a simplified version of the collision term 
where part of the particle distribution function relaxes to the equilibrium condition 
after the collision. This idea was applied to the lattice Boltzmann scheme to 
replace the original version of collision term and is known as the lattice BGK 
collision model. However, the relaxation time of energy carried by the particles to 
its equilibrium is different from that of the momentum. Therefore two different 
relaxation times need to be used to characterize the momentum and energy.: 
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The equilibrium distribution functions are defined as 
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where R is the ideal gas constant and ρ, u, and T are the macroscopic density, 
velocity, and temperature respectively. In order to apply the LB scheme into the 
digital computer, the evolution equations need to be discretised in velocity space. 
Details of the discretization procedure can be found in [11]. As a result, the 
expression for the discretised equilibrium density distribution function is 
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eq
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and 
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for internal energy density distribution function. The value of ω in Equation (7) 
and Equation (8) depends on the direction of the microscopic velocity, ci of the 
particle distribution function. In this paper, nine directions of microscopic velocity 
model D2Q9, for density distribution and four directions, D2Q4 for internal 
energy distribution function are chosen. The respective lattice geometries are 
shown in Figure 1. 
 
  
 
 
 
 
 
 
 
 

(a) (b) 
 

Figure 1:  (a) D2Q9 velocity model, ω0 = 4/9, ω1-4 = 1/9, ω5-8 = 1/36 
 (b) D2Q4 velocity model,  ω1-4 = 1/4 
 
The macroscopic variables, such as density ρ, velocity u, and temperature T can 
be evaluated as the moment of the distribution function  
 

cccuc dgTfdfd ∫∫∫ === ,, ρρ  (9) 
 
By applying the Chapmann-Enskog expansion, the above equations can lead to the 
macroscopic continuity, momentum and energy equation. Detail derivation can be 
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found in [14] and [15] and will not be shown here. The viscosity υ, and thermal 
diffusivity χ, in these models are related to the time relaxations as follows: 

5.0,5.03 +=+= χτυτ gf  (10) 
 
3.0 NUMERICAL SIMULATIONS 
 
In this section, the proposed model is applied to simulate natural convection in a 
square cavity with localized heating from below and symmetrical cooling from the 
sides. Symmetrical cooling from the sides is expected to be an efficient cooling 
option, while partial heating at the lower surface simulates the electronic 
components such as chips [16]. The temperature difference between the partial 
bottom wall and other walls introduces a temperature gradient in a fluid, and the 
consequent density difference induces a fluid motion, that is, convection. Figure 2 
shows a schematic diagram of the setup in the simulation. No-slip boundary 
conditions [5] are imposed on all the faces of the square with width, H. The 
thermal conditions applied on the walls are depicted in Figure 2. The lower wall 
has a centrally located heat source, l = H/5, which is assumed to be isothermally 
heated at a constant temperature, TH. 
 

 
 

Figure 2:  Geometry and boundary condition of the problem 
 
The Boussinesq approximation is applied to the buoyancy force term as follows: 
 

( )jG mTTg −=β  (11) 
 
where β is the thermal expansion coefficient, g is the acceleration due to gravity, 
Tm is the average temperature and j is the vertical direction opposite to that of 
gravity. Thus, the external force in Equation (1) can be written as 
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The dynamical similarity depends on two dimensionless parameters: the Prandtl 
number Pr and the Rayleigh number Ra, 



 
 
Jurnal Mekanikal, December 2008 

46 

 

υχ
∆β

χ
υ 3

==
THg

Ra  ,Pr  (13) 

 
In all simulations, Pr is set to be 0.71 in order to simulate air cooling of electronic 
components. For low Rayleigh number simulation, Ra = 104 was selected to 
conduct the grid independence test. Four levels of grids namely 10, 14, 16, 18 and 
20 for heated plate have been tested. Similarly for the high Rayleigh number 
simulation, grid 25, 30, 35 and 40 was selected and tested at Ra = 106, using the 
combination of D2Q9 and D2Q4 lattice model. As can be seen from Figures 3 and 
4, as the grid is refined, variation in the two successive grid decreases for both 
cases. Grids 20 and 40 for the heated plate were chosen for all subsequent low 
Rayleigh and high Rayleigh number calculations by considering the relative time 
of computation with desirable accuracy. The following criterion is employed to 
check for the steady state solution: 
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Figure 3: Grid dependence test Ra=104 

 

where the calculation is carried out over the entire system. Figure 5 shows the 
velocity vectors for Ra = 103. They showed that the hot fluid rises above the 
source until it reaches the top wall, then moves outwards along the horizontal wall 
before moving downwards along the sidewalls under the effect of cooling. Owing 
to the symmetrical boundary condition, the flow reaches an asymptotic steady 
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state exhibiting a symmetric motion about the vertical centerline of the cavity. 
The flow pattern is characterized by a primary flow which consists of two 
counter-rotating recirculations flows delimited by a vertical thermal plume. 
Owing to the symmetry, the flow in the left and right halves of the enclosure is 
identical except for the sense of rotation. 
 

 
 

Figure 4: Grid dependence test Ra=106 
 

 
Figure 5:  Velocity vector for Ra = 103 

 
The main characteristics of a natural convection flow can be shown in terms of 
streamlines and isotherms. Figure 6 illustrates the streamline patterns for all 
Rayleigh numbers simulated using LBM. Owing to the symmetrical boundary 
condition, the flow reaches an asymptotic steady state exhibiting a symmetric 
motion about the vertical centerline of the cavity. The flow pattern is characterized 
by a primary flow which consists of two counter-rotating recirculations flows 
delimited by a vertical thermal plume. Owing to the symmetry, the flow in the left 
and right halves of the enclosure is identical except for the sense of rotation. 

Grid 
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Figure 6:  Streamline plots for Ra = 103, 104, 105 and 106 (LBM) 
 

 
 

Figure 7:  Isotherms for Ra = 103, 104, 105 and 106 (LBM) 
 

 
 

Figure 8: Isotherms for Ra = 103, 104, 105 and 106 (FLUENT) 
 
Isotherms at different Rayleigh numbers simulated using LBM and FLUENT are 
shown in Figures 7 and 8. The results from LBM are in good agreement with the 
results from FLUENT. At Ra = 103, the isotherms deviate slightly from a diagonal 
symmetric structure indicating that most of the heat transfer is by conduction. As 
the Rayleigh number increases, (Ra = 104), the streamline plots show that the 
cores of the cells move upward and the effect of convection can be seen in 
isotherms due to the distortion of the isotherms. At Ra = 105, the formation of 
thermal boundary layer can be observed due to increased recirculation intensity. 
At Ra = 106, the thermal boundary layer gets thinner and the vortices grow as a 
result of higher fluid velocities which contributes to an increase in the overall heat 
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transfer. It can be seen from these figures that as the Rayleigh number increases, 
the intensity of recirculation increases and the cores move up to the top wall. 
Figure 9 show the comparisons of the results between LBM and FLUENT for the 
temperature profile at the mid-height of the cavity at all Rayleigh numbers. At low 
Rayleigh numbers, (103 and 104), the temperature profiles are typical of shear 
layers developing along the sidewalls. These layers are rather thick because of the 
low value of the considered Rayleigh number. As the Rayleigh number increases, 
Ra = 105, large gradients are clearly visible in the profile of temperature plotted 
above the heat source. At Ra = 106, these boundary layers becoming thinner due to 
high intensity of recirculation and heat transfer from the heat source.  
 

 
 

Figure 9: Temperature profiles at the mid-height of cavity for all values of  
 Rayleigh numbers (o) LBM and (–) FLUENT 
 
4.0 CONCLUSIONS 

 
In this paper, the natural convection heat transfer in a square cavity with localized 
heating from below and symmetrical cooling from the sides has been studied using 
double-distribution function thermal LBM with different microscopic velocity. 
Our study showed that the flow pattern and heat transfer mechanism are 
significantly affected by the value of Rayleigh number. The demonstrated results 
are also in excellent agreement with those obtained from FLUENT. This indicates 
that the LBM approach is a promising procedure to study flow and heat transfer in 
a differentially heated cavity.  
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