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ABSTRACT  
 
Solutions to the Navier Stokes equations have been pursued by many researchers. 
One of the recent methods is lattice Boltzmann method, which evolves from Lattice 
Gas Automata, simulates fluid flows by tracking the evolution of the single 
particle distribution. Another method to solve fluid flow problems is by splitting 
the Navier Stokes equations into linear and non-linear forms, also known as 
splitting method. In this study, results from uniform and stretched form of splitting 
method are compared with results from lattice Boltzmann method. Lid-driven 
cavity problem at various Reynold numbers is used as a numerical test case. 
 
Keywords: Lattice Boltzmann method, splitting method, distribution function, 

SIMPLE, lid-driven cavity problem 
 
1.0 INTRODUCTION 
 
The application of Navier-Stokes equation in solving fluid flow has evolved in the 
past few decades with numerical method as one of the most adopted techniques. In 
the traditional two dimensional solution of viscous incompressible flow, one of the 
most popular velocity-pressure coupling methods is SIMPLE (Semi-Implicit 
Method for Pressure-Linked Equation). 
 SIMPLE technique involves the convergence iteration to determine the 
pressure values for every main velocity-time iteration. As an alternative, 
Karniadakis et al. [1] introduced a new formulation for high-order time-accurate 
splitting scheme for the solution of the incompressible Navier-Stokes equations. 
 Principally, flow problems where large gradients are concentrated in specific 
regions require refinement of resolutions on those regions. Instead of using 
uniform, high resolution grid distribution in the physical domain, grid points may 
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be clustered in the regions of high flow gradients and broaden at other regions. 
Stretched coordinate could demonstrate these advantages with direct usage of 
mathematical models of Navier-Stokes solution derived in Cartesian coordinates 
with minimum verifications of the discretization methods. 
 This work is meant to bring together the advantage of Splitting method as 
pressure-velocity solver of higher efficiency with the advantage of consuming 
stretched grid which produces more accurate results in relatively equal number of 
grid points as compared to Cartesian grid. 
 Lattice Boltzmann method (LBM), a numerical method based on particle 
distribution function has been demonstrated to be a very effective numerical tool 
for a broad variety of complex fluid flow phenomena that are problematic for 
conventional methods [2][3]. Compared with traditional computational fluid 
dynamics, LBM algorithms are much easier to be implemented especially in 
complex geometries and multi-component flows. Historically, LBM was derived 
from the lattice gas (LG) automata. It utilizes the particle distribution function to 
describe collective behaviors of fluid molecules. The macroscopic quantities such 
as density and velocity are then obtained through moment integrations of the 
distribution function. 
 In this paper, rephase carry out the simulation of lid-driven cavity flow using 
the two approaches mentioned above. It should be stated clearly that the objective 
of this work is not to make a comparison of both numerical algorithms with 
respect to computational efficiency in terms of CPU time. This was already a topic 
of our previous work [4], which demonstrated that the splitting method is more 
efficient for high Reynolds number simulation. Therefore, besides the physics of 
the flow in a square cavity, this paper focuses on the comparison of accuracy of 
both methods.  
 
2.0 DESCRIPTION OF NUMERICAL METHODS 
 
In the following section, a brief introduction to the two different numerical 
methods is given. For a more detailed description, the literature cited may be 
referred. 
 
2.1 Splitting Method 
The temporal integration of the Navier-Stokes system is achieved using a semi-
implicit splitting method, similar to the method of Karniadakis [1], Osman [5] and 
others. Consider the Navier-Stokes expression below 
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Integrate the above equation over one time step, ∆t, 
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where k is the time step.  
 The first term is easily evaluated without approximation. A semi-implicit 
method treats linear terms implicitly for stability, and non-linear term is achieved 
with the second-order Adams-Bashforth method. The pressure term is treated by 
reversing the order of integration and differentiation, and then introducing time-
averaged pressure while the implicit treatment of the linear viscous term is 
achieved with the second-order Crank-Nicholson method. The combined 
difference equation becomes, 
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The continuity equation is imposed at the leading time step, 
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 In splitting method, Equation (4) is integrated numerically in three parts for 
each time step, each stage addressing the three terms independently and take 
divergence of this equation and use the continuity equation to obtain the Poisson’s 
equation for pressure, 
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where the nonlinear term is neglected. Take the normal component of Equation (4) 
to get, 
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 Karniadakis et al. [1] have shown that all the right hand side terms of above 
equation can be neglected for large Reynolds numbers, leaving, 
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 For that reason, Karniadakis et al. recommend higher order boundary 
conditions for a better approximation, especially for low Reynolds-number flows. 
 Regular Cartesian coordinates can be ‘stretched’ according to the specific 
requirement by the use of algebraic transformation technique. In generating grid 
coordinates for flow in a duct, [6] derived a set of algebraic expressions to 
transform points in computational Cartesian coordinates to physical stretched 
coordinates and vice versa. 
 For the case of square cavity flow, algebraic expressions are used to cluster 
grid points near solid boundaries and critical locations such as the corners of a 
cavity to provide adequate resolutions for the viscous boundary layer and 
secondary vortices. Since the transformation for flow in a duct was found to be in 
a single horizontal direction, modification is done for the cavity flow grid by first 
transforming the horizontal, x direction and then followed by transforming the 
vertical, y direction. 
 The algebraic formulation for transformation between physical and 
computational domain is shown as:  
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 For a cavity of width L and height H, β is the clustering parameter, and α 
defines where the clustering takes place. When α = 0 the clustering is at x=L and 
y=H; whereas when α = 1/2 clustering is distributed equally at the four sides of 
the cavity. 
 
2.2 Lattice Boltzmann Method (LBM) 
The starting point for lattice Boltzmann simulation is the evolution equation for a 
set of distribution functions f i which is discrete in both space and time 
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where e is the particle’s velocity, τ is the relaxation time for the collision, fi

 eq is an 
equilibrium distribution function and i = 0, 1,…, 8 for two-dimensional nine-
velocity model (D2Q9). The right hand side of Equation (1) is the collision term 
where the BGK approximation [7] has been applied. The discrete velocity is 
expressed as ei = (0, 0) for i = 0, ei = (cos (i – 1)π/4, sin (i – 1)π/4) for   i = 1, 3, 5, 
7 and ei = 21/2(cos (i – 1)π/4, sin (i – 1)π/4) for i = 2, 4, 6, 8. Macroscopic density 
ρ and velocity u of the fluid are determined by the following velocity moments of 
the distribution function 
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 The equilibrium distribution function, fi

 eq is chosen such that the continuum 
macroscopic equations, approximated by evolution equation, correctly describe 
the hydrodynamics of the fluid. For D2Q9 model, fi

 eq is defined as  
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where c = (3RT)1/2 and the weights are ω0 = 4/9, ω1,3,5,7 = 1/9 and ω2,4,6,8 = 1/36. 
Through multiscaling expansion, the mass and momentum equations can be 
derived from D2Q9 model as below 
 
 0=⋅∇ u  (15) 
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The viscosity, υ can be related to the time relation in lattice Boltzmann equation 
as below 
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 The algorithm in LBM generally consists of two steps: (a) streaming (left hand 
side of Equation (11)), where the distribution function moves to the nearest nodes 
in the direction of its velocity, and (b) collision (right hand side of Equation (11)), 
which occurs when particle distribution function arrives at a node. In LBM, the 
collision is set to occur at the same time at every lattice node. Therefore, the 
simulation using LBM is restricted to uniform mesh only. 
 One of the important and crucial issues in lattice Boltzmann simulation of flow 
is accurate modeling of boundary condition. Boundary conditions in LBM were 
originally taken from the LG method, known as the bounce back scheme [8]. This 
type of boundary condition was used at walls to obtain no-slip velocity condition. 
The bounce back scheme means that when a particle distribution streams to a wall 
node, the particle distribution scatters back to the node it has come from. The easy 
implementation of this no-slip velocity condition by the bounce back boundary 
scheme is another advantage of LBM for simulating fluid flows in complicated 
geometries. 
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3.0 NUMERICAL RESULTS 
 
The lid-driven cavity flow has been used as a benchmark problem for many 
numerical methods due to its simple geometry and complicated flow behaviors. It 
is usually very difficult to capture the flow phenomena near the singular points at 
the corners of the cavity. 
 In this section, the lattice Boltzmann and splitting methods are applied to this 
lid-driven cavity flow of height L. The top plate moves from left to right along the 
x direction with a constant velocity U , and the other three walls are fixed. Results 
published by Ghia et al. [9] were used as the benchmark for accuracy. Only 
uniform grid was applied for the lattice Boltzmann computation while the uniform 
and stretched coordinates were applied for splitting method. 
 The accuracy of both methods at steady state conditions was first compared. 
The two velocity components, horizontal velocity u and vertical velocity, v along 
the vertical and horizontal lines through the cavity center together with the 
benchmark solution are shown in Figures 1-3. For 33 × 33 grid at Re = 100, all 
methods showed good comparison with those of Ghia et al. [9]. Looking closely, 
the stretched coordinate of splitting method seemed to agree very well, followed 
by splitting method using uniform coordinates and finally the least accurate is the 
lattice Boltzmann method. Increasing the Reynolds number to 400, both results 
produced by splitting method (uniform and stretched) began to show some 
discrepancies with those of Ghia et al. [9]. However, results by lattice Boltzmann 
method remained to agree well with those of Ghia et al. [9]. For higher Re, that is 
1000, results by splitting method with Cartesian coordinates failed to accurately 
predict the flow behavior.  
 

� ��� �

��� �

��� �

��� � � ��� � � ��� � ��� � � � �

	�
��

�� � � � � ��� �
����� � � � �
����� �

�� ! "

��"�! #

"�! "

"�! #

 ! "

�� ! " ��"�! # "�! " "�! #  ! "

$�%'&
(') * +�) , -�+�.
/�0�1 2 3 * 4
56-�1 7

 
 

Figure 1: Vertical (left) and horizontal (right) velocity for Re = 100 
 
 Figures 4(a) – (c) show plots of stream lines for the Reynolds numbers 
considered simulated using lattice Boltzmann method. It is apparent that the flow 
structure is in good agreement with the previous work of Ghia et al. [9]. For low 
Re (Re = 100), the center of vortex is located at about one-third of the cavity depth 
from the top. As Re increase (Re = 400), the primary vortex moves towards the 
center of cavity and increasing circular. At Re = 1000, a pair of counterrotating 
eddies can be clearly seen at the lower corners of the cavity.  
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Figure 2: Vertical (left) and horizontal (right) velocity for Re = 400 
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Figure 3: Vertical (left) and horizontal (right) velocity for Re = 1000 
 

       
 (a)                                      (b)                                     (c) 

 
Figure 4: Streamline plots for (a) Re = 100, (b) Re = 400, (c) Re = 1000 

 
4.0 CONCLUSIONS 
 
Three methods were employed to solve the traditional lid-driven cavity problems 
with different force strength: Lattice Boltzmann, splitting method with Cartesian 
coordinates and splitting method with stretched coordinates. For low Re, splitting 
method with both uniform and stretched coordinates showed good results with 
relatively coarse mesh. At high Re, both splitting method with uniform and 
stretched coordinates failed to show results with acceptable accuracy. For the 
splitting methods, the stretched coordinate results were more accurate compared to 
those of Cartesian coordinates. Lattice Boltzmann results showed some 
discrepancies between those of Ghia et al. [9] for the computation at low Reynolds 
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numbers. However, lattice Boltzmann computation has shown an excellent 
stability and accuracy for the simulation at high Reynolds numbers. 
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