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ABSTRACT

This paper concerned with the simulation of two phase fluid flows in two
dimensions using lattice Boltzmurm method, The oviginagl free energy loitice
Boltzmann model is reviewed in some detail, Which ways then developed info a new
Jfree enersy maded hased on the isotropy approach and The Gallilean invariance is
elea considered Same simulation yesults, which have been performed elzewhere,
are repeaied o test the validiny of this model
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1.0 INTRODUCTION

The importance of understanding fluid flow with a change in phase arises from the
fact that many industrial proccsses rely on these phenomena for materials
processing or {or energy transTer, e.r. petreleum processing, paper-puiping, power
plants and boiling water reactor, There are many common examples of multiphase
Mow nol only in industrial proccsses but also evervday life. Thus the
understanding of multiphase flow 1s essential for both fundamental rescarch and
engineering applications. However, due to the complex nature of multiphase Qow,
theoretical solutions are generally limited to relatively simple cases. Meanwhile,
the experimental approaches for multiphase flow are very cxpensive if not
impossible, depending on the scale andfor fluid composition. Therefore. it is
reasonable to say that numerical simolations arz primarily useful in studying the
arderlying physics of multiphase flow and providing infonmation about the details
of processes that are difficult to obtain by theoretical analysis or by experiments.
Recently, simulating multiphase flow wilth Lattice Bollzmann Method (LBM)
has attracted muoch altention. Microscopically, the phase segregation and surface
tension i multiphase Oow are becanse of the interparticle forees/interactions, Duc
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to its kinetic nature, the LBM is capable of incorporating these interparticle
interactions, which are difficult to implement in traditional methods.

In general there are three types of lattice Boltzmann models have been
advanced to simulate multiphase flow systems. The first type is the so-called
colored model for immiscible two-phase flow proposed by Gunstensen et al. [1].
Gunstensen et al used colored particles to distinguish between phases. The color
model was further developed by later studies [2], but it has serious limitations.
One of the most significant problems is that the model is not rigorously based
upon thermodynamics, so it is difficult to incorporate microscopic physics into the
model [3].

The second type of lattice Boltzmann (LB) approach to model multi-
component fluids was derived by Shan and Chen (SC model) [4]. In the SC model,
a non-local interaction force between particles at neighboring lattice sites is
introduced. The net momentum, modified by interparticle forces, is not conserved
by the collision operator at each local lattice node, yet the system’s global
momentum conservation is exactly satisfied when boundary effects are excluded
[5]. The main drawback of the SC model, however, is that it is not well-
established thermodynamically. One can not introduce temperature since the
existence of any energy-like quantity is not known [6].

The third type of LB model for multiphase flow is based on the free-energy
(FE) approach, developed by Swift et al. [7], who imposed an additional constraint
on the equilibrium distribution functions. The FE model conserves mass and
momentum locally and globally, and it is formulated to account for equilibrium
thermodynamics of nonideal fluids, allowing for the introduction of well defined
temperature and thermodynamics. The major drawback of the FE approach is the
unphysical non-Galilean invariance for the viscous terms in the macroscopic
Navier-Stokes equation. Efforts have been made to restore the Galilean invariance
to second-order accuracy by incorporating the density gradient terms into the
pressure tensor [8, 9].

In the present work, the free energy approach of multiphase lattice Boltzmann
scheme proposed by Yonetsu [9] is used to simulate two-phase flow phenomena.
Yonetsu has shown that his model could predict well the bubble shear phenomena
and obtained a very good agreement with analytical result for the Laplace's law
pressure of droplet-gas system. As extension to their works, we include the
external force in the governing equation and simulate the bubble rises
phenomenon.

This paper is organized as follows. In Section 2, a brief overview of lattice
Boltzmann method along with theory of free-energy multiphase lattice Boltzmann
is discussed. The isotherms P vs V. graph from Van-Der Waals fluid equation is
plotted in order to find the value of density for both liquid and gas phases at
certain pressure and temperature. In Section 3 two-phase at initially non-
equilibrium condition, bubbles rise and coalesce phenomena were simulated to
show capability of the two-phase lattice Boltzmann model. The final section
concludes this study.
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10 MULTIPHASE LATTICE BOLAZMANN METIIOD

The starting points for lattice Boltzmann simulations is the evalution equation,
digerete in space and time, For a set of distribulion functions f .. If a two-
dimension nine-velocity model (D209} is used, then Lhe evolution squation for a
mven f, take the torm

Flx+edetrai)—fixi)= i [_;{Z (x,£)= £ [1,:}]+ £ (1)

where Af is the time step, ¢ is the particle’s velocity, T is the relaxation time for the
collision, F is the external force and i = 0, 1,.... & Noted that the first term in the
right hand side of Equation | is the collision fenn where the BGK approximation
[10] has been applied. The discrete velocily is expressed as ¢, — (0, M fori=0, g
={cos {i — )m/d, sin (i— Dmi4) for i = 1,3, 5, 7 and & = 2'*(cos (i — /. sin (i —
Dni4yfor i =2, 4, 6, 8. £™ 1s an equilibrium distribution [unction, the choice of
which determines the physies mherent in the simulation.

The updating of the lattice consists of basically two steps: a sireaming process,
where the particle densities are shified in discrete time steps through the lattice
along the conneeclion lines in direction e, 1 their next neizhboring nodes and a
collision step, where locally a new particle distribution is computed by evalating
the right hand side of Equation 1.

In {ree-energy two-phase lalice Boltzmann madel, the equilibrium distribution
determines the physics inherent in the simulation. A power series in the local
velocity is assumed [11]

Fh= E(ﬁ',_,:u” ]+ C'(ej-_ﬂ{?l__ﬁyﬁnﬂ )+ Du® +Goge e, (2)

where the swnmation over repeated Cartesion indices is understood. The
coetficients A, 8. € , D and G5 are determined by placing constraint on the
moments of ;. Tn onder that the eollision tenm conserves mass and momentum,
the livst moments of £ are constrained by

Y [Hep (3)
2 Gl = pu, h

Ef]

The next mument of /™ is chosen such that the continuum macroscopic equations
approximated by evolution equation cormrectly deseribe the hydrodynamics of a
one-component, non-ideal fluid. This gives

Z 2eulaf = Py v puu, +u [u,,ﬁ‘ﬁ {o)ru,2 (p)+ TR (;7}5#... ]
i

(5]
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where v = ¢*(t - 1/2)A#/3is the kinematic shear viscosity and Pz is the pressure
tensor. In order to fully contrain the coefficients 4, B, C , D and G4 , a fourth
condition is needed, which is

zgme,ﬂe,},f}""— 2(u5 +uyd, +u§) (6)

The values of the coefficients can be determined by a well established procedure.
For the constraints (Equations 3-6) one possible choice of coefficients is:

3
A =44y, 4,=p-44, +A2)-—~2—c—2—[2uu?,8?,p+lc(5},p)z] (7)
ty == - (0,0 - 00,1} ®
Yol
B,=——. B =4B 9
2 }26‘2 1 2 ( )
= 0, = A0, (10)
&c
D,=——P_ p -4ap,, D,=—2E 1
2—"52‘;{: i 23 0“? ( )
1 2
G =27 20u,0,p+x(0,0) (12)
Gixy :G2yx e 8C (u aylo'l'uyaxp) SC xp)(ayp) (13)
GZyy =GZxx (14)
Giop =4Gy,, forall @, (15)

The analysis of Holdych et al. [8] shows that the evolution scheme, Equation 1
approximates the continuity equations

8,p+8,(pu,)=0 (16)

and the following Navier-Stokes level equation:
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The top ling is the compressible Navier-Stokes equation while the subsequent
lines are error terms, We have, then, described a framework for a one component
free energy lattice Holtzmann,
The theory of Van-Der Waals fluid is very close related to the wmultiphase
phenomena. The Van Der Waals equation of state 15 can be written as
i o HE(I
(o2

R

(V -nb )= nR7 L18)

-

where # is the mole number, ¢ and A are constant characteristic of a particular gas
and R is the gas constant. p, ¥ and T are as usual the pressure, volume and
temperature, Fquation 18 can be rewritten in terms of the following ‘reduced’
quantitics

| B .:‘,]{3;?—1)_3:?"' {19)
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Figure 1 shaws plot of isotherms on 47— diagram for various 7. For 7 > 1, the

oraph looks very much like the ideal gas isotherms. lowever, for T <1, a "loep’
(minimum and maximum) in 5 is cccur, At this condition, the system separates
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into two phases, a gas of volume V; and a liquid of volume V;. The two coexisting
phases both have the same pressure denoted by P;. The value of V; and ¥, can be
determined by recalling that at equilibrium condition, the chemical potentials of
the two phases must be equal. As a result we come out with the situation that they
can be found geometrically by the so called ‘Maxwell equal area construction’ as
shown in the Figure 1. For Example, for the value of T'= 0.55, the value of ¥ and
V, are 0.4523 (or density pg = 2.221), and 0.2043 (or density p = 4.895)

respectively.
b
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Figure 1: Isotherms plot of 7 — v

The thermodynamics of the fluid enters the lattice Boltzmann simulation via
pressure tensor P,z . The equilibrium properties of a system with no surface (i.e
periodic boundaries) can be described by a Landau free energy functional

v = [av {W(p,r)+§(a“p)2] (22)

subject to the constraint
M= [avp (23)

where y(p, T)is the free energy density of bulk phase, k is a constant related to the
surface tension, M is the total mass of fluid and the integrations are over all space.
The second term in Equation 22 gives the free energy contribution from density
gradients in an inhomogeneous system. For Van-Der Waals fluid, free energy
density of bulk phase can be written in the form

y/(p,T)z PRT In[ £ ]— ap’ (24)
1-bp

Introducing a constant Lagrange multiplier,s, we can minimise Equation 22,
giving a condition for equilibrium as
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‘i*fi -V =1 {25)
o

By multiplying Equation 235 by 2p/8x and integrating once with respect to x, we
obtain the first integral

W — g —-i (6 o) =const 26)

A

At equilibrium condition, the chemical potential and pressure of both phases are
given by

pi=RTIn] —2 ]+ A i, Q7
1-bp | 1-bg
R i
= - 28)
e

respectively. We now define Wi, T) = - uo + p, meaning that Equation 25 and
Equation 26 can be rewritten as
W _wip (29)
dp

W=2(.p0F (30)

By solving Fquation 30, we are able to determine the density profile at the
interface for different values of  as shown in Figure 2, Noted that Tourth order
Rungue-Kutta scheme is used to solve Equation 30 and temperature is set at T=
0.55. As can be seen from the graph, the value of & is related to the density
gradient al the interface and also affects the width of interface.
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Figure 2: Density gradicnt at the intertace for various value of »
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3.0 SIMULATION RESULTS

3.1 Phase Separation

In this section, the phase separation which is based from the thermodynamic
instability of the Van-Der Waals fluid is simulated. As discussed in Section 2.0, if
the initial state is set to an isothermal unstable region, according to the equation of
state, the system will automatically separates to the liquid phase and the vapor
phase and then achieve equilibrium cond ition.

(b) | ©)

(d (e) H
Figure 3: Snapshot of phase separation

The transient behavior of phase separation was done in order to examine the
validity of Yonetsu’s model. The D2Q9 model with 101 x 101 lattice is used and
the simulation was done at 7= 0.55. Other parameters are presented in the Table 1.

Table 1: Parameters used for the simulation of phase separation

Ax Ay At T K
0.05 0.05 0.01 1.00 0.0001

Figure 3 shows the domain morphology at time steps of 200, 800, 2400, 2700,
3300 and 8000 separately. Although the initial bubble nuclei are small, the mass
densities inside the droplets are close to their equilibrium value, as illustrated in
Figure 3(a). The small bubbles are coalescing and form larger and larger bubbles
as the time evolves. Figure 3(b) contains coalescing bubbles in the view field. A
spherical bubble at equilibrium state is illustrated in Figure 3(f). The interface
during the system evolution is clear and of the same thickness.
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3.2 DBubble Rise

In this section. the two-dimensional single bubble rising wnder buoyancy is
simulated. The density of cach phase are taken as pr = 4.893and g = 2.221. The
pericdic boundary condition 1s emploved at all boundaries. Initially, it is located at
the lower region {one sixth of the height) of computational domain of 481 = 161,
The dimensionless parameters {Eotvos, Morton mamber and Revnolds) are delined
as

ES
5 - 880 (31}
o
4
Mo = BELOOU (32)
o
pric o (33}
L?

where g is the gravitstional force, Ap is the density difference for twvo phase
system, 18 the Muid density, L7is the velocity of the bubble ar equilibrium srate,
i 15 the radius of hubble and < is the surlace tension coefficient.

Figure 4: Time evolution of bubble rise phenomenon at £a — 10

simulations have been done for Eo of 10 and 20, Due to buovancy farce, the
bubble will move upward. Tn the meantime, the middle part of the bubble will
cneounler 4 lage detormation due to the hit of swrounding water, Equation 31
indicates that the increase of Fo is equivalent to the decrease ol The surface tension
coelficient o, It 15 well known that the surface lension force is to resist the
deformation of the bubble. In other words, (he decrease of o enhances the
deformation of the bubble. This phenomenon 1% elearly revealed in Figure 4 and
Tigure 5 which display the bubble shape of the lwo cases. The bubble of case one
i5 close (o the original shape. As the Fo is increased, the bubble shape delormed.
Tor the case of £o = 10, the shape of the bubble does not change too much. This is
because for this case, the surface tension ferce is strong, trying Lo keep its nitial
confrguralion. At £o = 20, (Eo is increased and surface tension lorce decrease).
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the bubble move up faster and the bubble’s shape change. For all the cases, the
bubble is always kept symmetrically.

Figure 5: Time evolution of bubble rise phenomenon at Eo = 20

3.3 Bubbles Coalesce

(b) (©)

(d) ©) : ®

Figure 6: Snapshot of bubbles’ coalesce

The bubble coalesces have been study in details by Zheng et al. [12]. Zheng
found that for the two stationary bubbles without collision, it was found that the
distance (gap) between the bubbles and the interface width (w) are the major
factors to decide whether the two bubbles will coalesce or not. When the gap of
the two bubbles is larger than 2w, the two bubbles will not coalesce. Otherwise,
they will coalesce.
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‘T'o study the effect of the width of interface layer om the numerical results, two
stationary  bubbles without collision is considered as shown in Figure 6. The
computational domain is taken as 100 = 100, Initially, two cireular bubbles with
the radius & are localed horizontally with a pap of 4. The periodic boundary
condition is employed at all boundaries. The density ralio is sct a3 2214, The
parameters are chosen as £ = 15 lattice units and 1 = 100, The gap of the two
bubbles () is taken as O.8, while the width of the interface (w) is 1.8 laltice units.

MNumerical results are shown in Figure 6. It can be gastly observed that for the
case where the gap of two bubbles 15 less than 2w, the two bubbles coalesec
evertually without collision and are in agreement with other researcher’s results.

4.0 CONCLUSIONS

This paper has shown the capabilities of lattice Bolternann method in solving the
two-phase system. The advantages of multiphase latiice Boltzmann approach are
not only capable of incorporating interface deformation and interaction but also
the interparlicle interactions, which are difficull o implement in traditional
methods, Two-phase fow benchmark tests showed the relaxation process of the
bubble/droplet, which is in agreement with other researchers. It is demonstrated
that the free encray two-phase LBE model has the ability to simulate phase
scparation, bubble rise and droplets coalesce. The phase separation phenomeno
has been correctly predicted where the value of density or volume for both phases
at equilibrium state are in gowd agreement with the isothermal p — F graph, The
numerical results of bubble rise and droplet coalesce indicate that the two-phase
lattice Bolzmann schemes may be applicable for simulating interfacial dynamics
in immiscible phases,
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