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ABSTRACT

Controlling engine speed corresponding to load variations and road condition has always
been a challenge to automotive engineers. However, with the introduction of Electro-
Mechanical Dual Acting Pulley Continuously Variable Transmission (EMDAP-CVT),
maintaining constant engine speed based on either its optimum control line or maximum
engine power characteristic could be made possible. This paper describes the simulation
work in this area carried out by the Drivetrain Research Group at the Automotive
Development Centre, Universiti Teknologi Malaysia, Skudai Johor. The developed drive
train model is highly non-linear; it could not be controlled satisfactorily by common linear
control strategy such as PID controller. To overcome the problem, the use of Artificial
Neural Network (ANN) is employed to indirectly control the engine speed by adjusting
pulley CVT ratio. Computer simulations showed that applying artificial neural network
(ANN) into drive train model could select a proper transmission ratio where the engine
could be maintained to run at certain desired engine speed.

Keywords: Artificial neural network, CVT control, electromechanical CVT, engine speed
control.

1.0 INTRODUCTION

One of the major challenges faced by car industry to day is the reduction of the
fuel consumption. One alternative for achieving this goal is to increase the fuel
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efficiency of the engine by running the engine along its optimum operating line
(OOL), Figure 1. Within the available operating range of internal combustion
engine, continuously variable transmissions (CVT) is able to achieve more
efficient operating levels than conventional automatic step gearbox, thus
improving operational capability and fuel economy. The classical way to control
CVT was the use of some information on the gear ratio or on the transmitted
torque, which was then fed back by a PID type controller, [1]. He also stated that
based on his experience with this approach the outcome was not very encouraging,
unless reinforced with a gain scheduled controller with typically 100 difference
gain points.

" Masayuki Fuchino and his partner Kouhei Ohsono, both of them came from
Honda R & D Co. Ltd. They started controlling CVT with very basic control
system by giving read data obtained through out their company experiment
involving CVT since 1962 [3]. In 1962, the company introduced the first mass
production hydraulically operated CVT into the market with the Juno, a scooter
with a 0.175 liter engine generating 8.8 KW. Until the end of 1996 this company
has successfully developed a new generation CVT for the 1.6 liter economy car,
Civic series.
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Figure 1: Typical Engine torque curve and optimal operating line [2]

The -performance of the engine and the power train takes the most important
part in car’s fuel efficiency and drive ability. Thus, it is very important to maintain
engine being the optimal working point according to car’s moving resistance by
regulating the ratio and changing the throttle opening, the so-called synthesized
control method can be used for this purpose, [4]. Because the characteristic of the
engine and the transmission is greatly change under different conditions, it is very
difficult to control the ratio and the throttle opening to meet such demand. Fuzzy
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control strategy was investigated to solve this problem, the simulation done by
Wang Hongyan et al shows that the synthesized controller realized by the fuzzy
strategy can maintain engine operating at the maximum efficiency point at any
power demand level.

2.0 DRIVE TRAIN.MODEL

To model the desired engine speed based on modelling, it is necessary to
determine the drive train parameter. The dynamic vehicle is divided into three
parts, i.e. engine, Transmission (CVT) and wheel as shown in Figure 2. It is
assumed that there is no wheel slip; that vehicle speed is equivalent to wheel
speed. Most researcher use Euler equation as a basic equation based on Figure 2
[1,5-9]. The analysis begins with the engine speed dynamics, modelled as a single
inertia system, given as:

o, = [i[Tc - Te,(fm'] (1)

¢

The wheel side of the vehicle was modelled as single inertia with
) 1
a)w = [_ [ﬂ,’lr’”l',W - T] (2)

where T, is the torque generated by the engine and 7.y, denotes the torque
applied to EMDAP-CVT by the engine. 7, is the total torque generated by the
wheels. The symbol /, and 7, denotes the equivalent the engine and car inertia
respectively.

Throttle CVT
angle 6
{( 3}( ENGINE M( Gm
1,
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(a) " — ‘ (c)
(b)

Figure 2:-Drivetrain model

Since the function of EMDAP-CVT is to transfer torque from the engine to the
wheels, 7. ¢y denotes the torque applied to CVT by the engine. The EMDAP-
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CVT is modelled as single integrator with a lumped inertia placed on the engine
side of the EMDAP-CVT [1,9]. The transmission dynamics are given by:

Tevr :UTe,CVT 3)

o(f) = u(t) (4)

where v(1) is the effective gear ratio, and u(?) is the EMDAP-CVT control input.
The kinematics relationship of the shaft speed on either side of the EMDAP-CVT
is given by:

v, =0, 5)

where v is the EMDAP-CVT ratio, which is the function of engine speed, @, and
vehicle speed, w,.
The above equations (3.1)-(3.5) can be represented into a single equation:

. ol -(@,1,+T,)
&, = (6)

I,

Te is the engine torque, which is a function of, throttle angle, Gprome, and engine
speed, @, and can be represented as:

Te = f(a)e > ethroltle) (7)

Most of the current research [1,5,6,7,8,9], the engine torque was approximated by
second order polynomial. According to Guzzela the second order polynomial was
sufficiently well in most cases, but the author tries to develop the engine map
model using look-up table based on data experiment.

The external torque could be modelled as:

T, =(Ra+ Rr + Rg + Ri)*r (8)
where the first term on the right hand side represent the drag, which is equal
% pCd AV’ )

Rr is rolling resistance, where the type of tyre will influence its value, but there is
a standard equation of rolling resistance and represented as follow.

R, =(a+bv)mgcosd (10)

The drag resistance, Rg, represent road gradient in the form of
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R, =mgsinf (11)

And the last term is acceleration resistant which equal to:

dav
Ri=m— 12
7 (12)

3.0 NEURAL NETWORK ARCHITECTURE

An artificial neural network consists of a number of very simple and highly
interconnected processors, also called neurons, which are analogous to the
biological neurons in the brain. The neurons are connected by weighted links
passing signals from one neuron to another. Each neuron receives a number of
input signals through its connections: however, it never produces more than a
single output signal. The output signal is transmitted through the neuron’s
outgoing connection, which in turn, splits into a number of branches that transmit
the same signal.

The singie unit of the neural network (also called a neuron, or perceptron) is
just a function applied to the weighted sum of inputs. The perceptron shown in
Figure 3, implements the function:

y= f( £ +bj (13)

where f is the activation function, wy is the constant threshold value (called
weighting factor), and b is a bias. Even a specific network structure and the
activation function for each unit are given, the expressive power of the neural
network would be meaningless, unless can figure out the correct weights for the
connection. Fortunately, there is an algorithm called back-propagation that allows
the network to learn the weights [10]. Usually, the neuron in the back-propagation
network uses a sigmoid activation function, which is simple equation. The
sigmoid activation function is expressed as:

- (14)
l+e™
The learning in the neural network works by back-propagating [11] the error
that occurs at the output units. At each step, an input is presented to the network
and the output is compared to the correct target value. The weights of the units and
bias are then readjusted so as to minimise the error they have made. The error is
defined as the sum of square errors over all output units and it is expressed as:

EI :l Z(l’, _0/)2 (15)

2

leoutputs
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where t is the number of iteration. Consider to above neural network architecture,
Figure 3, the following algorithm is to adapt the weights between the output (1)
and hidden (k) layers:

Input (j) Hidden Layer (k) Output (1)
X1
Y
X2 > =¥
8
1
Xn = L. o ) f
net j net k
: Tbm
Figure 3: A layered structure of perceptions
Wy (£ +1) = w, (1) + Aw, (1 +1) (16)
where Aw, (t +1) = aAw, (f) 17)
OE
and Aw, = (18)
Ik
Expanding the expression by chain rule, equation 18 become
oF OF Onet,
- (19)

ow, Onet, ow,

Let be &, , which is the error signal

Onet,

Since net, = Z w, O, +b, , where O, is the output of hidden layer k,
]
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OF
o= =6,0, (20)
aM}/k

Here ¢ is the error signal from the neural network output to the hidden layer. By
chain rule again:

oE 0E 00,
y = = 21
Onet, 00, Onet,
. 1
ginge O, = flnet,)= e
o0 0
thus L= T+e™) t=—1+e™™ ) [-e™ 22
Onet, Onel, {( ) } ( )l ] 22)
. . —nel 1 - 0/ . . ‘
substituting e "' = - into equation 21to get
!
00 1 1-0 1-0
L= =0, —+=0,(1-0) (23)
onet, (1+e™)" O, O,
s == (r—0,)’
ginge £ ==(F, —=
2 / /
OF
therefore — = —(r, — O 24)
00, =9 (
Equation 21, &, which is the error signal between layer k and | becomes:
6, =-(r,-0)0,(1-0,) (25)
thus equation 17 becomes
Aw, =(r, =0,)0,(1-0,)0, (26)

Similar rule to the hidden layer and output layer, the adaptation of weights
between hidden (k) and input (j) layers have the value of:

w, (t+1)=w, () +Aw, (1 +1) 27

where  Aw, (1 +1) = aw, (1) (28)
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and  Aw, =6,w,0,(1-0,)0, (29)
Substitute with equation 24, equation 28 becomes
Aw,, =-w, (r, =0,)0,(1-0)0,(1-0,)0, (30)

By adapting the weights and bias, the error between the threshold and the output
can be minimised. In this paper, the NN will be applied to the vehicle plant to
control the CVT ratio so that the actual engine speed will follow the engine
reference. The equation 5, for vehicle model with dynamic motion, is used to
develop control strategy which will be explained in the next sub-chapter.

4.0 PROPOSED CONTROL SCHEME

Simulink tools were used to simulate the above equation. Figure 4, represent
simulation model based on equation derived in the sub chapter 2.0. The drive train
plant could be simplified model as seen in Figure 4.

—» T,

T_h_r_o_tEl_e_(?_)_} Drive train plant | Vpeed

Gear ratio () el T
—_——

— > W

Figure 4: Vehicle dynamic plant

As in the real system, to control vehicle speed the driver has to press the pedal as
well as changing the gear ratio. In this simulation, the author tries to simulate
drivetrain system closed to the real, so the inputs of drivetrain model are throttle
opening and gear ratio.

Based on the equation 3 where vw, =, and T, was function of @, and

throttle opening, G, it could be understood that behavior of the engine speed
depend on gear ratio as throttle opening remain constant.
When the throttle opening was kept at constant value:

The engine speed @, would increase while the gear ratio v increases
The engine speed @, would decrease while the gear ratio v decreases

The basic control scheme the author proposed is described in the Figure 5. The
control scheme must take by necessity both a macroscopic view by examining the
interaction of the engine-EMDAP-CVT-load dynamics as well as the driver
intentions and road condition, and microscopic view of individual EMDAP-CVT
subsystems and subassembly with respect to ratio control. For this project, the
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macroscopic controller is suitable to use intelligent controller rather than classical
controller. Because in this section interaction between vehicle, engine and road
gradient have highly non linear.

; Ve
Drive | p speed

train 7
2
»  plant —>p

Engine
Throttle speed

|
}
I
: + AANN I PID CVT
angle desired |1
I
|
|
I
I
|

Controller Controller [™® model

Figure 5: Proposed control scheme

The engine speed desired could be plotted based on optimum control line or
engine speed at maximum power or maximum torque in engine power map.
Engine power map could be carried out experimentally as shown in Figure 6. The
engine 660 cc Daihatsu was coupled with hydro water break dyno as load variator.
The opening throttle angle, ;.. Wwas set at constant angle and hydro water
break dyno was loaded, hence the engine torque could be plotted by using data
acquisition system.

Figure 6: Experimental rig of 660 cc Daihatsu engine with Hydro
water break dyno as load factor

47




Jurnal Mekanikal, December 2006

Figure 7 shows the experimental results of engine torque uses 660 cc Daihatsu
engine. Every line in the graph represents torque of engine for certain throttle
opening and start from very small throttle angle, 3%, up to 99.9%. This graph was
applied to the model plant by equation 6 and equation 5 became drivetrain plant
with gear ratio, v, throttle angle, Gjou, and engine speed, @., as input. By
controlling gear ratio, v, the engine speed can be maintain constant on its
trajectory.
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Figure 7: Engine 660 cc Daihatsu torque performance

The online adaptive neural network is applied to find out the suitable CVT
ratio. The error between the output and the reference will then be sent back to
adjust the weights and bias by back-propagation rule. The result of controller is
the ratio desired and will be sent to CVT inner controller as desired ratio. This
ratio then compensates a torque delivered by the engine to the wheel so that the
engine runs closed to engine speed desired.

5.0 RESULTS AND DISCUSSION

The engine output torque is the function of engine throttle opening, Oproute, and its
speed n,, which is modelled as numerical table through the calibrated experimental
at certain condition, Figure 7. In this simulation, the target line is represented with
3" order polynomial:
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3 2
n, =c,0 +c,0 +c,0

e

+8&y (€20

throttle throttle throttle

where ¢;= -0.00000098825264, ¢,=-0.00023266280965, c5=0.05409118539876
and ¢,=1.19385322086360

The design criterion for the ANN controller is to maintain engine speed at
desired engine speed i.e. target line based on the opening throttle angle, G ome. To
evaluate the performance of the ANN controller, the engine speed was adjusted by
setting throttle angle, G, at certain value or plot the 6,0, according to
sinusoidal line, Figure 8 (a) top, equation 30, which would calculate the engine
speed desired, had value such as plotted in Figure 8 (a) bottom.
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Figure 8: (a)Simulation on throttle angle and engine RPM desired
(b)Simulation results of online ANN with learning rate, o,
0.0000000875

In order to explore the working of the back propagation, which was applied, to
online ANN, the author adjusted various learning parameters until a number of
learning rates had obtained. To find the exact learning rate, which can be used in
difference set point, the author had try to applied in 2 difference situation. Firstly,
the set point of engine speed was based on the sinusoidal line between 15% to
90% throttle opening then calculate with 3 order polynomial, equation 30, the
engine speed was obtained as engine speed referent, Figure 8(a). With learning
rate, o, of 0.0000000875 the results shown that the actual engine speed can follow
the referent after 20 sec, Figure 8(b).

The responses of the starting vehicle to move was slow almost 20 sec before
steady state. In the reality, starting the vehicle to move will use another controller
and will not be discussed in this work. Figure 8(b) shows that when the engine
speed is in the top of graph before slowing down or in the bottom graph before it
is speed-up, the error is high as seen in Figure 9(a). This phenomenon caused by
the changing direction of DC motor in the inner CVT controller as seen in Figure
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9(b). Because the gear ratio between motor to the power screw used in the CVT is
high (1:128.57), the response of power screw to return is slow.
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Figure 9: (a) Macroscopic error
(b)Response of microscopic CVT controller using PID

Secondly, throttle angle, Gyrome, Was kept in constant value, hence the engine
speed reference remain in constant value, and then the road gradient in the
simulation was set based on the highway road condition that average road gradient
between 3-5%, Figure 10. With learning rate, o, of 0.0000000875, the result of the.
simulation shown that the controller was able to keep the engine speed in its’
reference condition.
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Figure 10: Response of online ANN with different road gradient
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6.0 CONCLUSION

The control strategy for CVT ratio control to maintain engine speed follow a
desired engine speed has been developed. Online ANN is used to control
behaviour between the engine and vehicle dynamic due to road condition, whereas
the PID is used to control inner CVT ratio by controlling two DC motor
synchronously to achieve its ratio desired. The control model is implemented in
Matlab/Simulink environment and is capable of simulating ratio and engine speed
during ratio change due to external disturbance such as road gradient. This serial
control is working well and it is clear that online ANN is able to maintain engine
speed to its referent by changing the ratio of the CVT.
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NOMENCLATURES
P Air density (kg/m”)
0 Slope of road gradient (%)
v Transmission ratio
W, Engine angular speed (rad/s)
Wy Wheel angular speed (rad/s)
A Frontal area of the vehicle (m?)
a Tire cornering stiffness parameter
b Tire cornering stiffness parameter
b, Bias factor of neural network
Cd Coefficient of drag
E Error of the neural network
v Activation function
L, Engine Inertia (kg m”)
I, Vehicle Inertia (kg mz)
Jok.l Hidden layer
m Vehicle mass (kg)
0 Output of perceptron
r Radius of tyre (m)
Ra Aerodynamic vehicle resistance (N)
Rg Drag resistance (N)
Ri Vehicle resistance due to vehicle acceleration (N)
Rr Rolling resistance (N)
Tevw  Output CVT torque (Nm)

T, Engine Torque (Nm)
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