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ABSTRACT

Different attitude control strategies of a small satellite are presented in this paper as well as their
simulation with the MATLAB® software. Firstly, the linear mathematical model of the satellite is
derived for the gravity gradient (GG) control method, which represents a passive control design.
Simulation results show that the response of the satellite to initial conditions is marginally stable.
The second phase of the study focuses on the design of a control algorithm used to damp the
satellite oscillations around its equilibrium position with a simple hardware setting added to the
satellite. The mathematical model of the new system is developed and simulation about the roll
and yaw axis are realized. A consequent amelioration in the satellite response can be observed.
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1.0 INTRODUCTION

The attitude control problem represents one of the several most studied space
research area since the late 1950°s. The gravity gradient stabilization of a
satellite has been considered as a very attractive method at the beginning of the
space age due to its intrinsic simplicity, reliability and low cost [1]. The main
drawback of this passive method of control is its lack of accuracy and the
inability to stabilize the satellite oscillations as explained by Lewis [2] with the
Polar BEAR satellite launched in 1986, and further discussed by Desamours [3]
in 1995. A common and cheap method used to reduce these undesired oscillations
is to utilize passive dampers. A description of different kinds of passive damping
methods has been realized by Fleeter and Warner [4]. Unfortunately the time
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required to damp the oscillations to their minimum is usually very long and might
not be acceptable for most of the control system requirements. The next step in
improving the stability of GG-stabilized satellite is the implementation of active
damping. This method requires the use of the earth’s magnetic field to produce
some control torques inside the satellite that will oppose the oscillations. Martel,
Pal and Psiaki [5] have presented this method and its advantages compared to
passive damping. Arduini and Baiocco [6] have discussed different control
algorithms to provide active damping. Through numerical simulation some
algorithm, were found to be more efficient than those of reference [5]. This paper
demonstrates that the purely passive GG stabilization is unsatisfactory and
presents a different approach of determining the control torques used for the
active damping control method.

2.0 Dynamics Equations of Motion

The attitude motion of the satellite is modeled by the Euler equations for the
motion of a rigid body under the influence of external moments. The total
external moment acting on the body is equal to the inertial momentum change of
the system. External moments are the combination of aerodynamics effect, solar
pressure and gravity gradient forces, magnetic torques, and reaction torques
produced by particles expelled from the body. In this section we will develop the
dynamic equations for a general satellite with momentum exchange devices like
reaction wheels for example.

2.1 Dynamic equations
The dynamic equation of the satellite in the satellite body frame is given by

T =T.+ Tyq= hi = h+ exh, (1)

Where h is the momentum of the satellite in the body frame, ® is the angular
velocity vector of the body frame with respect to the inertial frame, T, is the
control moment and Ty is the disturbance moment.

The angular momentum of the entire system will be divided between the
angular momentums hg = [A, h, hz]T of the rigid body and hy, = [Ax hwy hwz]T of
the moment exchange devices that could be added to the satellite.

Then h=hg+ hy 2)

The general dynamics equation becomes after development of the cross product
T=Tc+ Ta=[h x+ hux+ (@ h- 0 hy) + (@) Aoy - @ hyy)]i
+ [hy+ hwy"' (wzhy- wxhy) + (7 hyy - Wz hw)1j

F TRt Byt (@xhy- 0yhy ) + (g huy- Oy b YK 3)
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Where i, j and k are the unit direction vectors of the body axis frame, which is
a set of axes fixed with respect to the satellite body.

2.2 Linearization of the dynamic equations

To make possible the classical treatment of the satellite dynamics equation by the
linear control theory it is necessary to linearize equation (3). This is realized by
assuming infinitesimal displacement about an equilibrium position of the
satellite, which is defined by the Zg body axis (yaw axis) pointing toward the
center of the earth, and the Y body axis (pitch axis) being normal to the satellite
orbit plane as in Figure 1.

Orbit Plane Yg / pitch

Satellite

Xg /roll

Figure 1 Satellite reference frame

Considering an almost circular orbit we can approximate [7] the absolute
angular velocity of the satellite, expressed in the body axes, to

w, ] P-ya,
o, |=| 0-w, |, “4)
@, ] z,/'/+ P,
Fwd s 8 9
a)x ¢_ W a)O

and its first derivative l=| 6 | ®)
a.)z Y+,
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The Euler angles ¢, 6, and y are defined as the rotational angles about the
satellite body axes: @, about the Xp axis; 6, about the Yg axis; and y, about the
Zg axis. The term ay represents the orbital angular velocity of the satellite.
Substituting equations (4) and (5) inside equation (3) we obtain

Tiot Tor= Lo + 402 (L 1) ¢ + 0oLy~ L - L) U+ Frwe - 00 htg W g
- @0 hwyo - xyt9 -Ixy;/}‘lxyw(z) v +2I,, wOé.

Tigt Toy = 1,5 + 302 (Li-1)8 + Ty Ty ( - 200 .02 §) + L (-7
-2a)0g;)+a)§r//), >(6)

Ti 4 Toy = Ly + oL+ L 1,)¢ + @ (I-I) ¥+ R+ 00ltux+ Pliuyo

-y @ohuyo-1:0 L@ 200l 6 - 031 0.

A constant momentum bias term h,,, is added in the y-axis equation to take
into account some possible momentum devices that can be used in the satellite to
provide angular stability about the Y axis. Note that the gravity gradient moment
terms have been added to the right hand-side of these equations and are not part
of the disturbance or control torque.

3.0 GRAVITY GRADIENT ATTITUDE CONTROL

This type of control is said to be passive as it relies on no other device than the
satellite mass repartition. Usually being asymmetric, the satellite subjected to the
earth gravitational field will experience a torque tending to align its axis of least
inertia with the field direction.

3.1 Equations

There is no control torque for this case so the terms Ty, Ty, T, are zero. We also
assume that there is no momentum device so hyy hw, and h,, also disappear.
Equation (6) becomes

Ty =19 +4w§(1y'lz) 1] +w0(1y'lz'lx) v,
Tdy = y:9. +3w§(lx'lz)9: (7)

Tp=Ly + &} (I,-1.) w+wo(l, + I,- 1) ¢

The products of inertia are assumed equal to zero in equation (6). This case is
not restrictive but obtained by choosing the satellite body axes as the principal
axes of inertia.
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Using the following definition,
ox=(I,-L )/, oy=(I:-1)/1,, o,=(1,-L)/I, €))

equation (7) becomes:

1l

O+ 4020 ¢ -wo(l-0) w = Tu/ L,

8 a)go-z w+wo(l-o)9 = Ty/l,
o +3wlo, 0 = Ty/l, 9)
These are second order linear differential equations of the Euler angles. Note
that the first two equations for the roll and yaw axes are coupled and therefore

need to be studied simultaneously. The Laplace Transforms of the roll-yaw axis
from equation (9) are given by

)| 1 |s*+wio,
w(s)| AGs) |-sw,(1-0,)

sw,(1-0,) T, /I +s¢)+ ¢, - w,(1- 0) ¥,
X
s’ +4wjo,

. (10)
T,/I,+w,(1- 0,) @, + sy, + ¥,

with  A(s) = s* + W} 3o+ 0,0, + 1] 8 + 4wl 0,0, (11)

The Euler angles and their derivatives with subscript O represent the initial
conditions of the satellite attitude about its equilibrium position.
From equation (10) we get the Roll axis equation

$(5) = (5 + @} 0) [(Tad L+ s o+ Po- wo (1- 03) wo)] + swo (1 - 03)
(Tl I, +@0(1-0) o+ swo+ o)l / A(s) (12)
And the equation about the Yaw axis is:
w(5)= [ 500 (1- &) (T I+ 5§t Po - ol 0) wo) + (52 + 40t o)

(Tie/ I+ w0 (1- 03) Po+swo+ o)l / A(s) (13)

In the sequel we will study the influence of small perturbation angles from the
equilibrium position, therefore the disturbance torques and the initial velocities
are assumed to be zero. Equations (12) and (13) simplify to
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@ (s) = [(s> + @ 0x) (50— wo(1- 62) wo) + 3\
swg (1 —oy) (wo(l-07) @o+swo)l/ A(s)

w(s)=T-swo(1-0;) (spo— wo(1-0) o) +
(s* +4 @] 0;) (@o(1- 0) Po+ swo)l / A(s) > (14)

P(s) = [s°Po+ 500> Po (1 — 0.+ 05 0) - g :( 1 = 05) Wol /
[s*+ @2 Boyt 0, 0,+ 1) s° + 4 0,5,

J

w () =[S wotswy wo (1 - o)1 — o)+ 40) + 4wy 0x¢0 (1 —0)] /
[s* + w2 3oy + 0,0, + 1) s* + 4} 0, 0). (15)

3.2 Simulation

The satellite considered to simulate the above algorithm is the Malaysian satellite
TiungSAT-1, launched in September 2000 [8]. The satellite characteristics are
shown in Table 1. '

Table 1 Satellite Characteristics and Initial Conditions for Passive Control

Moment of inertia I, 100 kg—m2
Moment of inertia I, 100 kg-m®
Moment of inertia I, 2.5 kg-m®
Orbital rate w, 0.0010764 rad/s
Initial Roll angle ¢, 3 deg

Initial Yaw angle y, 1 deg
Simulation time 5 orbits

3.3 Discussion

The simulation in response to an initial angular perturbation from the equilibrium
position shows that the satellite is marginally stable for the roll angle as in Figure
2 and divergent for the yaw angle as shown in Figure 3. Attitude stability of the
satellite thus cannot be realized by using only GG control.
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Figure 2 Roll angle response
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Figure 3 Yaw angle response
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4.0 ACTIVE ATTITUDE CONTROL METHOD

To improve the stability of the system, the study were focus on how to increase
the damping as well as decrease the steadystate error. To achieve this requirement
an active control scheme described by the following control torques for the roll
and yaw axes respectively was proposed:

Tcx = —(kx¢ + kxd é) )
T.=—(ky+k,v). (16)

The above control torque is easily created within the satellite by
magnetorquers, or magnetic actuators, that will interact with the earth magnetic
field. Note that this control scheme requires the measurement of the roll and yaw
Euler angles, problem which is not covered in this paper.

A momentum wheel is added to the satellite equipment to provide inertial
stability about the pitch axis (Yp axis), which is perpendicular to the orbit plane.
Acceleration and deceleration of the momentum wheel could be used to produce
corrective torques to control the satellite in the roll-yaw plane [9,10].

Equation (6) becomes:

Tu=ILp +[a+wohuy @ +[b+hayly +k otk 9
Tiy=1,0 +d0 -hy, 17)
Ty, =Ly + (ct wohwy)y-(b+hw) ¢ +ky+k, v

where h,,, represents the constant momentum bias Ay, of equation (6).
For notation simplicity, we defined

a=4w;(1y-L), b=wo(y-L-L),c= @} (,-L), d=3w] -1, (18)
In any practical system the term hyy is large enough to justify neglecting the

terms b, a/wy, and c/wy in front of hy,. After simplification, the Laplace
transforms gives:

Tals=Ls* ¢ — LS Go— L Po + 0o huy @ + huy SW — hyyWo +k O+ k s p—k ¢,
Tals =1,s*~ L,60s — I, §o+ db,
Tuds =Ly s"—Lyos =L, Wo+ @0 huy W —byy @ + huy @, +k,W +k 45w —k 4, (19)
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The equation on the Roll-Yaw axis becomes

§2 Jri(kZ +k, s+ muh,) _ S
[(f’(s) } 1 L L X
- sh
w(s)] A(s) Iwy 5%+ Ii (k, +k s+awyh,,)

T, /sl +sdy+ &)0 +Woh,, [, o)

TSI, - 6 ohyy /L, +5 Wy + W 4
Where

AG) L =s* L1, +5° (Kea L+ kaa 1) + 8% [Kna Kua + hwy® +I( Ky + @0ty )
+ Ix( kz + CO0hwy )] +S [ kzd ( kx * (DOhwy) + kxd( kz & 0)Ohwy)]
+ keky + ( @0hy )* + ©Oohwy (ki + k;) (21)

The values of the control parameters of equation (16) need to be determined
from the characteristic equation in such a way that the roots of the closed-loop
system are stable. The steady-state errors along the ¢ and y angles will determine
the value of the constants k, and k;.

The determination of k. and k., is realized by identifying equation (21) with
the following equation:

A(S) = (52 + 2E10n1S + 0n1°) (8> + 26,0008 + On20). (22)

The satellite considered for simulation in this part has the specifications stated
in Table 2.

Table 2 Satellite Characteristics and Initial Conditions for Active Control

Moment of inertia I, 100 kg-m”
Moment of inertia I, 2.5 kg-m”
Orbital rate w, 0.0010764 rad/s
Initial Roll angle ¢, 3 deg
Initial Yaw angle y, 1 deg
Disturbance T, 510 °N-m
Disturbance 7, 510 °N-m
Steady state error ¢ 0.05 deg
Steady state error yss 0.2 deg
Momentum bias Ay 20 N-m-sec
Simulation time 5 orbits
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The results of the calculation provide the following control torque expression,
where the details of the calculation can be found in [11]:

T, =—(0.427x107¢+5.4368 ¢3) ;

T, =—(~0.14x10™y +8.8388y). 23)

The simulation is realized with a constant disturbance torque with the same
initial conditions as in the previous part.

5.0 CONCLUSION

The development of a mathematical model for the attitude control of a small
satellite with different control schemes was presented. The passive control
scheme using only GG has been shown to be inadequate to even basic control
requirements. A second method using active damping has been proposed and the
control torques necessary to its implementation has been determined. A
comparison of the passive and active method has been realized through numerical
simulation with Matlab and the data of the Malaysian Tiungsat microsatellite.
The active method that produced control torques along the satellite roll and yaw
axes was proven to be more efficient and able to stabilize the satellite around its
equilibrium position.
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