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ABSTRACT

Differential Quadrature Method (DQM) is a numerical technique for the solution of initial and
boundary value problems. This method has been successfully employed to solve a variety of
physical science and engineering problems. In this paper, the solution of the heat distribution in a
triangular fin has been obtained by the Differential Quadrature Method. The numerical solution
has been compared with the exact solution and it agrees very well. The results show that
unequally spaced mesh points yield stable and accurate results. The numerical solution obtained
by using equally spaced mesh points is less accurate and lead to instability once the number of
grid points exceeds a critical value.

1.0 INTRODUCTION

Differential Quadrature Method (DQM) was first proposed by Bellman et al. [1]
who solved successfully initial and boundary value problems. Areas of the
problems in which the applications of DQM may be found in the literature
include fluid mechanics, bioscience, structural mechanics, transport processes,
static aeroelasticity and lubrication mechanics. It has been found that the DQM
has a better capability of producing highly accurate solutions within minimal
computational effort. Presently, there are many numerical discretization methods.
The common aspect of all these methods is that the discretized form of a Partial
Differential Equation (PDE) only involves the functional values at mesh points
inside the solution domain. For these reasons, some numerical methods such as
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finite difference method [2-5] and the global method of differential quadrature [6-
11] can only be applied to regular domain problems. The coordinate
transformation can be made by numerical grid generation technique [12-13] and
the need for coordinate transformation technique for irregular domain problems is
actually due to the fact that the discretized form of a PDE only involves the mesh
points inside the solution domain. Therefore, the physical boundary must be one
of the mesh lines. On the other hand, if the numerical discretization of the PDE is
not restricted by the solution domain, then the complicated coordinate
transformation technique can be disregarded. Thus, the numerical computation
for regular and irregular domain problems can be solved effectively in the
Cartesian coordinate system. In this paper, we have applied the differential
quadrature method (DQM) to the problem of heat transfer from a triangular fin.

2.0 DIFFERENTIAL QUADRATURE (DQ) RULE FOR WEIGHTING
COEFFICIENTS AND MESH POINTS

In this discretization rule, the differentiations in a PDE are discretized by the rule
of DQ and the rule is discussed in this section. The DQ rule was proposed by
Bellman et al. [1], following the idea of integral quadrature. It is known that the
integral of a function over a closed interval can be approximated by a weighted
linear sum of all the functional values in the integral domain. Therefore,
inspired from this idea and following Bellman et al. [1], we approximated the
differentiation of a function at a mesh point by a weighted linear sum of all the
functional values in the total domain. The main procedure in the DQ rule is the
determination of the weighting coefficients. DQ discretization for a smooth
function f(x) in its nth order differentiation with respect to x at a mesh point

x; is

fr) =Y, wif(x,) (1)
k=1

fori=1,2,.....,N;
where, N is the number of the grid points in the x direction, and f"(x;)
represents the nth order differentiation withn =1, 2, ..., N-1.

The weighting coefficients of the first order differentiation are calculated by the
DQ rule as
1
wh=— )10 N, while j i )
(x; —x;)-m (x;)

where
N

ml(xk): H(xk—xj) (3)

j=1, =k
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The diagonal weighting coefficients of the first order differentiation w), can be
obtained from

W= 3w @

The weighting coefficients for the second and higher order differentiations can be
calculated from the following recurrence relationship as

n-1

-1 1 ij
Wi =n-(wywl ——L—) 5)
) xl. —)Cj

fori,j=1,2,...,N;butj#in=23,...,N-1.

In the same way, the diagonal weighting coefficients w;; can be computed from
the formula

Wi == Dwj ©)

Weighting coefficients for the second and higher order differentiations can be
calculated from the above first order differentiation completely. Most of the
solutions give better accuracy for unequal spacing points. For this reason, it
requires that the mesh points to be clustered towards the boundary. Distribution
of such mesh points is shown in Figure 1.

Here, equal and unequal spacing mesh points distribution [8] are given by the
formula

2 )

and

L 11 7 )L , respectively, (8)

1
% =—(1—cos
2

where, L is the length of the computational domain 0O<x<L ; i=1,2,...,N;.
A

>
Figure 1 Typical non-uniform spacing mesh points used by DQ method
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3.0 HEAT TRANSFER IN A TRIANGULAR FIN

One-dimensional thin triangular fin is considered in this paper. The fin is shown
in Figure 2. Heat is transmitted along its length by conduction and dissipated
from its lateral surfaces to the surroundings by convection. The governing
equation for the temperature in the fin may be obtained by an energy balance and
written in a dimensionless form [14] as

d’0 do
_ =

m?0 , 0<c<I 9
gdgz i S 9)

. ) ) . T .
where, 0 is the non-dimensional temperature i.e., 8 =—— with T, the

wall

temperature at any point in the fin, 7, , the temperature at the base of the fin;

wall >

x . : . . .
G = 7 is the non-dimensional axial coordinate;

hI? . .
mis given by m? = E’ where L and 6 are the geometric parameters of the fin;

k and & are the thermal conductivity and fin-to-ambient heat transfer coefficient,
respectively.

2 -2
» G 3
Figure 2 A triangular fin
Boundary conditions are given as follows:
The tip of the fin is insulated, i.e.,
ao
Lo at ¢=0 (10)
dg
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and the base is at constant temperature, i.e.,
0=1 at g =l (1D

The exact solution is given in the form of the Bessel’s function of the first kind
with complex arguments [14]

_Jmy=¢)
SN oy (2

For the quadrature solution of the system of equations (9) through (11), the
requisite quadrature rules for the first and second order derivatives are given by

do L
Z s :z;w;jej (13)
]:
and
d’*o - .
:i-?|g=gi =§;w;9j, i=1,2,..,N (14)
£

where N is the number of mesh points in the domain 0 <¢ <1.

Substituting the quadrature rules (13) and (14) in equation (9), the quadrature
analog of the partial differential equation takes the form

N
$[cwz +wl e, -m; =0, i=1,2, .., N (15)

j=1

where 0, =0(gj)

Using the quadrature rule (13) in equation (10), the quadrature analog of the
boundary condition at ¢ =0 is

N
Ywio, =0, i=1 (16)
Jj=1

Also, the quadrature analog of the boundary condition at ¢ =1 as
0,=1, fori=N 17

Applying the fixed boundary condition, equation (17) in the quadrature analog of
the partial differential equation (15), we obtain

Nil[giwg- +w}j]6]~ +[g,-wl%\, +w,-1N]6N —mzei =0

J=1
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N-1
or, Y
»!

[ l-w,-? +wl-1j]9j —m?, :—g,-w,%v — Wiy since@, =1, andi=2,3,...,N-1

~

(18)

Similarly, using equation (17) in the quadrature boundary analog at the tip of the
fin given in equation (16), we obtain

w0 =-wy, 0,=1 i=1 (19)

j=1

Also, equation (17) can be rewritten as
By =1 (20)

Finally, we obtain three linear algebraic equations (18), (19) and (20) for our
numerical solution. These equations (18) to (20) are solved numerically using the
Gaussian elimination algorithm. The results of the thin triangular fin problem are
obtained for chosen values of the parameters m = 1 and 7, , =1 for simplicity

and are shown in Table 1 and Table 2. We have used here both equally and
unequally spaced mesh points as shown in equations (7) and (8) respectively, i.e.

Type I: Equally spaced mesh points distribution
i—1
N , i=1,2,..,N
Si N -1

Type II: Unequally spaced mesh points distribution (L = 1)

gi:ll—cosl—lﬂ; i=1,2,..,N
2 N -1

Once the numerical results at each mesh point are obtained, the relative
percentage error are computed as

numerical exact

Relative % error = %100

exact

4.0 RESULTS AND DISCUSSION

Since all material and geometric properties of the fin are represented by the
parameter m, a representative value of m = 1 is chosen to study the numerical
technique. Similar results may be easily obtained for different values of ‘the
parameter m. In Table 1 and Table 2, the maximum relative percent errors are
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shown at an interval of ¢ =0.1 for equally and unequally spaced mesh points
respectively using cubic spline interpolation. The length of the solution domain is
0<¢<1 along the length of the fin. It is seen that the quadrature solutions are of

very good accuracy when compared to the exact solution. The maximum error in
the quadrature solution is at ¢ =0, i.e., at the tip of the triangular fin due to

initialization and instability problem at the beginning and prominent with
unequally spaced mesh points. With the increase of the value of ¢, errors are
gradually reduced and at ¢ = 0.9, the error is minimum. But, at ¢ = 1.0, that is at
the base of the fin, the error is zero due to the boundary condition, as numerical
and exact values are the same there.

The convergence of the DQ solution for equal and unequal spacing mesh
points have been compared and shown in Figure 3. It is apparent that the
quadrature solution yields result with higher accuracy, of one order of magnitnde
or more, with unequally spaced mesh points as compared to that with equally
spaced mesh points and this accuracy is prominent with relatively lower and
higher values of the number of sampling points. It happens due to the mesh point
distribution strategy of equally spaced and unequally spaced sampling points.

For equal spacing mesh points (Figure 3), the solution converges up to
sampling points N = 45, from N = 46 through 51 the solution oscillates and after
N = 51, the solution deteriorates very rapidly. In this case at N = 45, the best
stable result is obtained. The reason for the deterioration of the results is due to
the formation of ill-conditioned coefficient matrix in the numerical solution. As
the number of sampling points increases, the errors increase in the computational
domain to calculate the weighting coefficients, and after a certain value of
sampling points, N, the weighting coefficients and hence the coefficient matrix
became ill-conditioned. For this reason the solution deteriorates and the error
increases rapidly with increasing N. However, on the contrary, the solution with
unequally spaced sampling points (Figure 3) shows a monotonic convergence
with increasing number of sampling points (shown up to N = 100). In addition,
for the case of unequally spaced sampling points, excellent convergence is
achievable for N > 31, whereas the average convergence range with equally
spaced case is only40 < N <45. This shows that for differential quadrature
method, the solution for unequal spacing sampling point is better than those of
equal spacing sampling points.

Figure 4 depicts the comparison of numerical and exact temperature
distributions (results) and the corresponding percentage error for equally spaced
sampling points with N = 45. The DQ numerical solution is very close to exact
solution except at the tip of the fin. At ¢ = 0, that is at the tip of the fin, it is

observed that the amount of error is about 2.25 percent, which is very small and
the error is gradually reduced with the increase of ¢ along the length of the fin.
However, for unequally spaced sampling points with N = 45, the same
comparison of fin temperature (exact, numerical) and corresponding percentage
error of DQ solution are shown in Figure 5. Here, the maximum error is at the tip
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of the triangular fin and gradually reduced with the increase of ¢, similar to
Figure 4. But in this case, the amount of error at the tip of the fin is only 0.2
percent, smaller than that with equal spacing sampling points. Since the DQ
numerical solutions have been compared with exact solutions, the accuracy of our
DQ numerical solution is clearly apparent here.

In Figure 6, the maximum absolute percentage errors of the DQ solution for
equal and unequal spacing sampling points with N = 45 are shown. At ¢ =0, the

errors are maximum as usual, which are 2.25 percent and 0.2 percent for equal
and unequal spacing sampling points respectively. In both cases, errors converge
smoothly with the increase of ¢, whereas unequal spacing shows better

convergence compared to equal spacing throughout the range of ¢ .

Investigating the various mesh points distribution for equal and unequal
spacing, the unequally spaced mesh points distribution give better and accurate
results and the solution converge smoothly with increasing number of mesh
points.

5.0 CONCLUSION

The solution of the temperature distribution in a triangular fin is obtained using
the method of Differential Quadrature. The results agree very well with the exact
solutions and show the efficiency of the method. This method is more
appropriate for unequally spaced mesh point distribution than those of equally
spaced case. The solution obtained using equally spaced mesh points suffer from
numerical instability while the unequally spaced mesh points provide a robust
method for accurate solutions.
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Table 1 Solution with equally spaced mesh points

S | Exact Maximum % error in quadrature solution
Value Number of sampling points (N)
0 11 20 31 40 45 51 55
0.0 0.438 | 9.543 | 5.164 | 3.318 | 2.581 | 2.253 | 4.204 | 95.299
0.1 0483 | 3.863 | 1.685 | 0.951 | 0.693 | 0.581 | 1.199 | 28.403
0.2 0531 | 2.198 | 0.975 | 0.546 | 0.339 | 0.332 | 0.692 | 16.217
0.3 | 0.580 | 1.401 | 0.628 | 0.349 | 0.256 | 0.211 | 0.446 | 10.306
04| 0.632 | 0.926 | 0421 | 0.232| 0.171 | 0.139 | 0.300 | 6.793
05| 0.687 | 0.615 | 0.286 | 0.156 | 0.116 | 0.092 | 0.204 | 4.492
0.6 | 0.744 | 0399 | 0.192 | 0.103 | 0.077 | 0.059 | 0.138 | 2.896
0.7 0.803 | 0.243 | 0.124 | 0.648 | 0.049 | 0.036 | 0.090 | 1.743
0.8 | 0.866 | 0.128 | 0.074 | 0.363 | 0.029 | 0.018 | 0.054 | 0.885
09| 0931 | 0.038 | 0.036 | 0.146 | 0.013 | 0.005 | 0.027 | 0.233
1.0 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
Table 2 Solution with unequally spaced mesh points
S | Exact Maximum % error in quadrature solution
Value Number of sampling points (N)
0 11 20 31 40 45 51 100
00| 0438 | 3.022 | 1.002 | 0.451 | 0.283 | 0.229 0.182 | 0.053
0.1| 0483 | 0.645 | 0.167 | 0.068 | 0.040 | 0.032 | 0.024 | 0.006
0.2 | 0.530 | 0.386 | 0.098 | 0.039 | 0.023 | 0.018 0.014 | 0.003
03| 0.580 | 0.207 | 0.064 | 0.025 | 0.015 | 0.011 0.009 | 0.002
041 0.632 | 0.164 | 0.042 | 0.017 | 0.010 | 0.007 0.006 | 0.001
05| 0.687 | 0.109 | 0.028 | 0.011 | 0.006 | 0.005 0.004 | 0.001
0.6 | 0.744 | 0.068 | 0.019 | 0.007 | 0.004 | 0.003 0.002 | 0.000
0.7] 0.803 | 0.045 | 0.011 | 0.004 | 0.002 | 0.002 | 0.001 | 0.000
0.8 | 0.866 | 0.028 | 0.006 | 0.002 | 0.001 | 0.001 0.001 | 0.000
09| 0.931 | 0.010 | 0.003 | 0.001 | 0.007 | 0.000 | 0.000 | 0.000
1.0 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
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Figure 3 Comparison of convergence of fin-temperature for equal and unequal-
spacing of the DQ solution
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Figure 4 Comparison of fin-temperature (exact and numerical) of the DQ solution
using equal-spacing and sampling points N = 45
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Figure 5 Comparison of fin-temperature (exact and numerical) of the DQ solution
using unequal-spacing and sampling points N = 45
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Figure 6 Error comparison of fin-temperature for equal and unequal spacing of
the DQ solution with sampling points N,= 45
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