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ABSTRACT

In the present research, fix structure and floating structure such as vessel are studied in terms of
hydrodynamics forces and hydrodynamics coefficients. Currently, three-dimensional source
distribution method is adopted which taking into account the actual design of fix structure as well
as hull form. A curved triangular boundary element is implemenied with constant source
distribution on each element. Some improvements are adopted in order to solve the singular
integration of elements. Gauss-type Laguerre integration as well as cauchy principal value are
implemented to solve the Green function numerically. These modification show some
improvement of accuracy according to number of panels. Experimental result of Greek passenger
ship is compared with present result as well as Frank Close-Fit Method.

Keywords: Time Domain Ship Simulation, Curved Triangular Boundary Element, Source
Distribution Method, Discretization of Element, Green's Function, Singular
Integration Method.

1.0 BACKGROUND

One of the approach for the computation of fluid-structure interaction associated
with fixed or floating structures is diffraction theory or potential flow theory.
Diffraction theory, as to be known, refers to the inviscid, incompressible and
irrotational solution of fluid-structure interaction. In the linear diffraction theory
the solution to the fluid-structure problem is solved such that the linearized free-
surface boundary condition is satisfied as well as the kinematic boundary
condition on the surface of the body and on the sea floor. In addition, the waves
caused by the presence of the body or its motion satisfy a radiation condition at
far distance from the body.

One of the main limitation of the diffraction theory is the negligence of the
effect of viscosity. This discrepancy is obvious when comparison is made
between numerical results and experimental result of hydrodynamics coefficients.
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2.0 GREEN'S FUNCTION METHOD

The time dependence of the fluid motion to be considered here is restricted to
simple harmonic motion and, accordingly, ® may be expressed as

@ = Re[p(x,y,2)e ] 1)

where 0= 2m/T denotes the frequency of the motion, T being the period  and
¢ denotes the complex potential. The coordinate system (x; y; z) is referred to
still water surface.
The complex potentials must satisfy the Laplacian,

V=0, ()

The kinematic boundary condition on the bottom also must be satisfied,

2 (0, y,-h)=0, 3)

0z
where h denotes the water height. The boundary condition to be applied on the
immersed surface in problems considered here will be of the form,

0
Sy 0S8 (53,2)=0, )

where S(x, y, z) denotes the surface equation of the body V, denotes the specified
complex function which represents the magnitude of the normal component of
velocity on the immersed surface given by V, = Re [Vn (x, Y z)e_i“"J. The
linearized free surface boundary condition should be satified,

2
?(x, 3.0)- 2 6(x, 3,0)=0 5)
< g

Finally, in order to insure that the velocity potential has the correct behaviour in
the far field, the radiation condition must be fulfilled.

The source distribution produces normal velocities which are discontinuous
across the surface S but if the flow on one side only is of interest, the source
distribution appears to be the more convenient method and is applied in the
following.

0= [[ enE)(x v 5 0,0)=ds ©)

T

73




Jurnal Mekanikal, Jun 2003

where (£,n,{) denotes a point on S and f (¢,m,¢) denotes the unknown source
distribution.

The integral is to be carried out over the complete immersed surface of the
object. The Green's function, G (x, y,z;&,n,C) must, in order for the
representation in Equation (6) to be valid, satisfy all the boundary conditions of
the problem above with the exception of the kinematic condition, Equation (4).

The particular expression for G appropriate to the boundary-value problem
posed is given by Wehausen and Laitone [1].

11 g +v)cosh[u(§+d)]cosh[p.(z+d)]
G_E+E+2P.V._£e a st R
(k* —v* )cosh[k(¢ + @)]coshlk(z + )]

27
k*d —vid +v

Jo (kr) (7

where,

R=[x-2p +(y-n) +-0P]",
R =[(x—&f +(y+n)f +(+2d+0)

= [(x - ?;)2 + (y - n)2 ]1/2 and
v = ktanh(kd):

12
)

The solution to the boundary-value problem as given by Equation (6) satisfies
Equations (2), (3) and (4). When the kinematic boundary condition on the
immersed surface (Equation (4)) is applied, the following integral equation is
obtained:'

- fxy2)+ iﬂf(&n, C)%—i (6,3, z:E1,8)dS =2v, (x, 7, 2) ®)

oG . .
As usual, a— denotes the derivative of the Green's function in the outward
n

normal direction and (x, y, z) denotes points on S (x,y,2)=0

3.0 NUMERICAL SOLUTION

The integral Equation (8) may be solved numerically with the subdivision of S
into N curved triangular panels (6 nodes each element) of area AS ( j=1,20a N )

! The constant element of source is adopted in order to avoid corner problem.
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and identifying as node points the centroid of each panel. As shown in Figure 1,
every element consist of 6 nodes in order to produce a curved triangular.

Figure 1 Curved triangular boundary element

The techniques of discretization of the surface of the ship hull adopts
procedure employed by Bratanow, et. al [2] with some modication. Every two
station will be added a middle station, for instance, according to Figure 2, the
station (n+1) is added. The original station offset only include station (n) and
(n+2). After the discretization, Equation (8) is replaced by the N equations as
below:

'—f(xi’yi,zi)+$J;J.f(§’n’C)aa_f(xi,yi,zi;&’n’cys =2v, (xi,yi,zi) )]

By assuming the source strength function f(§,m,{) as constant over each
element, the Equation (9) becomes,

~-fisw, [, =2, 5i=52 .. N, (10)

where the repeated index denotes summation and
0y = [y oG 3,218 ) dS an
) e A T

Physically, o denotes the velocity induced at the ith node point in the

direction normal to the surface by a source distribution of unit strength
distributed uniformly over the jth panel. Equation (10) can be solved easily. In
order to reduce the computation time, the linear system of Equation (10) will be
transformed into block system. The Gauss elimination procedure with block
partition will reduce the computation time of CPU significantly.
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Figure 2 Discretization of ship hull

Following the same procedure, Equation (6) may be written as

0, =B, f; j=1,2,...,N (12)

where

By = 21_ [[G(x; y:,z:.6m.C)dS (13)
TUASj

In order to determine the hydrodynamic pressure on the immersed surface of
vessel hull, the Bernoulli's equation is used.

ool b pec
(14)

2
+

P = poRelige ™ ]—%pRe[(qﬁ £ 02 +7 ]—%p[@ 0,

Currently, only the first term is used to calculate the hydrodynamic forces and
moments. The forces and moments acting on the immersed surface are obtained
by integration of the pressure distribution. The force and moment vector are
obtained from the surface integrals

F = —po [ [Relige ™ | nds (15)

S
M =—po[[Relige™ ' xn)ds (16)

where r’ denotes the outward position vector extending from the point.
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4.0 NUMERICAL CALCULATION OF THE GREEN'S FUNCTION

The third term of Equation (7) can be written as

Rl tRb)-r

o U tanh(p,d )— 1 o M tanh(ud

+Fo )] ————d 17
u jutanh . 17)

e™du.

T fG(M) e _mfc(u)_fc k _—pd
) "= g e SO e
(18)

The first term in Equation (17) can be calculated using Cauchy principal value,
However, the second term in Equation (17) can be numerically expanded in
powers of p—k as®

1 a-1 ,
= = -k 19
ptanh(uh)-ktanh(kh) p—k +ay+a,(p—k)+a,(w—k) + (19)

Equation (18) can be solved using Gauss-type Laguerre integration method.
Finally, the surface integration over each triangular element can be written as

[as=[[" |cldean (20)
where, Jacobian is

G| = (%—%]x(g—z—%] (21)
The element surface is defined by the position vector

F=xi, + yi, + 20, (22)

The triangular element integration in Equation (20) can be easily calculated
using Gauss Quadrature over triangle method based on Reddy and Shippy [3].
According to Equation (7), the singular integration over the first term of Equation

N, J.J.%ds, can be solved analytically over each element [4].
S

? In the current programme, the number of expansion is limited to 20
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5.0 RESPONSE OF FLOATING VESSEL

The theoretical hydrodynamic analysis of the motion of floating bodies relies on
the principle of superposition of linear solutions. The formal development begins
with the assumption that the amplitude of the waves which excites the motion of
a floating body is small, and that the resulting induced motion of the body is also
small.

Through linearization, the complex problem under consideration can be
decomposed and treated as the sum of six separate problems namely surge,
heave, sway, roll, yaw and pitch motion of the floating vessel.

The small amplitude periodic motion of the floating body can be described by

X, =Re|x %™ | j=1,2,..,6 23)
X° =a@?, j= 4,56 24)

where X ;’( J :1,2,3) denotes the complex amplitude of the displacements in
surge, heave and sway. a represents the characteristic dimension of the vessel
hull and 6% denotes the complex angular amplitudes of the motion in roll, yaw

and pitch.
The complex potential for wave interaction with the floating vessel is given by
7
0= 0, (25)
j=0
where,

¢, is the complex potential associated with the incident wave,

¢; (i=1,2, .., 6) denote the complex potentials associated with the six
degrees of freedom of the body, and
0, denotes the complex potential associated with the scattering of the

incident wave by the restrained vessel hull.

The below relationships are adopted,
(I)l.(x, y,z,t): Rel(l)i(x,y,z)e_m 1f0r i=1,2,...,6 (26)

Each of the complex potentials must satisfy the Laplacian,
V?0,=0, i=0,1,...,7 27)

The kinematic boundary condition on the bottom also must be satisfied,

?;’_t(o’y’_h):()’ i=0,1,2,...,7 (28)

z
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and the linearized free surface boundary condition,

2
%ﬁ (%,9.0)-20,(x,7,0)=0  i=0,1,.7. (29)
g

Z

The hull kinematic boundary conditions to be satisfied on the
surface S (x, V,2= O) are

) :
0 .
aq;z =g, IZ(DXZI’ly‘ (31)
0 .
% =g,= l(DX;)nZ (32)
% = g, =i004[yn, - (d, + 2)ny] (33)
n
a0, . 0 '
D5 = g, =i0@d, + 2, +m,) 34
% =g, = im@O [xn — ynx] (35)
an 6 Y
90, 90,
e w PR ok
m 51T g
_ieH 1 [cosh ks [ik cosP.n, +ik sinP.n, ]+ k sinhks.n, ] g \rcos by sinfiep)
20 coshkal

(36)

The boundary-value problem defined by Equations (27-36) are similar to
previous Equations (2-5), therefore, the solution is defined as

0k(x.3.2)= = [ AEM.OG (e y 56 0, LS @

where k:1,2,...,6k denotes the six degrees of freedom and k = 7 denotes
scattering. The integral equations are also of the form given by Equation (8),

_fk(x’ y,Z)Jrzlnﬂfk(E_’,T],(:)aa—f(x, y’Zf@»ﬂ,g)dS = 2gk(x, Y, Z):k =L2..,7

(38)
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where gk are given in Equations (30-36) and H denotes the wave height.
Following the same discretization and numerical procedure, Equation (38) can

be written
- fki + (xl]fk] = 2gkl,k = 1, 2, ,71,] = L 2, S N, (39)

where N denotes the number of subdivisions on the immersed surface of the hull.

Equation (39) can be solved using Block Gauss Elimination Method.

Subsequently, Equation (37) can be written
(40)

Ok, =B, fy k=12,...7 i,j=12,...N

where B is given by Equation (13).
The linearized form of Bernoulli's equation gives the dynamic pressure on the

immersed surface in terms of ¢, as
(41)

P, = poRelip,e™ |,

for motion in the six degrees of freedom, and for wave interaction with the fixed
(42)

k=12,..,6

hull
Fy =pw Reli(¢0 +0, )e_lme

The forces and moments caused by the dynamic fluid pressure acting on the
immersed surface of the body are determined from expressions similar to

Equations (15) and 16),
F, =[] Phds ij=12...6 (43)
F, =~[[ Pyhds i=1,2,...,6 (44)

where F; denotes the i component of wave excitation force or moment and Fj;
denotes the i™ components of force or moment arising from the it component of

ship motion. The functions #, are

h=n, hy=n, h=n,
h, = yn, —(d1 +z)ny, hy = (dl % z)nx —xn, hg=xn,—yn,
The excitation force and moment coefficients, respectively, may be represented
by the complex coefficients
Fimae) s . ;
pga’0.5H
F. .
C,=—2m) % =456 (46)
pga 0.5H
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where &, denotes the phase shift of the force with respect to the crest of the

incident wave. A positive value of § ;jdenotes a lag. a denotes half of the ship

length.
In terms of forces due to the hull's motion, hydrodynamic coefficients such as
added mass and damping coefficients can be calculated as below

F, (max e}

2 4.0
pw a’x;

o Fy(max)ed .
M, —iN, =~ =456 j=12,...6 (48)
pwax;

~M, ~iN, = i=123  j=12,..6 47)

where M; and N, denote the added mass and damping coefficients,
respectively. Equations (47) and (48) can be written as

MU+iNU:jfﬁ(—¢;—i¢f)hjds i=123  j=12,...6 (49)
J

M. +iN, = ”ﬁo—(—mmf)hids i=456 j=12,...6 (50)
a 9,

6.0 NUMERICAL RESULTS

For the purpose of comparison, a rectangular bottom-mounted caisson 100 m by
100 m in plan by 50 m high placed in 100 m of water is studied. Numerical
results calculated by Garrison [5] presented for a total of 48, 108 and 192 panels
are presented in Table 1. According to Figure 3 and Figure 4, the present results
are promising. As shown in Table 1, the present results with 48 panels are more
accurate than Garrison’s method with 48 panels. Obviously, the present results
are closer to results with higher number of panels.

The present method is used for a simple hemisphere floating on the water. The
results of calculation is close to results produced by Garrison [5]. However, for
the comparison with model experiment, some discrepancy occur due to viscosity
and rotational effect of wave. According to Figure 6, the experiment use the
model of Greek Passenger vessel as shown in Figure 5. According to Figures 6-9,
with proper scaling, results are compared between Frank Close-fit, three
dimensional source distribution method as well as experiment. Obviously, the
experimental result can not be predicted when the natural frequency is more than
0.5 rad/s. However, when the natural frequency is smaller than 0.5 rad/s, the
three dimensional source distribution results are closer to experiment's result. In
terms of roll added mass, Figure 7 shows that Frank Close-fit method is more
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accurate when natural frequency is bigger than 0.5 rad/s. However, when the
natural frequency is smaller than 0.5 rad/s, results produced by three dimensional
source method is better than Frank Close-fit method.

As shown in Figure 8, the results calculated by three dimensional source
method are smaller than Frank Close-fit method. However, both graphs show the
same pattern which have maximum value near to 0.7 rad/s.

According to Figure 9, the damping value calculated by Frank close-fit method
is bigger than three dimensional source for natural frequency greater than 1 rad/s.

ﬁ';?x

F,(max) /pga*(H /2a) .

B

Non-dimensional Unit

14 16 18 20 22 24
T (sec)

Figure 3 Horizontal Force of a Rectangular Bottom-Mounted Caisson

Table 1 Moment Coefficient, M (max)/pga* (H /2a), of a Rectangular
Bottom-Mounted Caisson.

Period (T) Garrison Garrison Garrison Present Metod
(N=48) (N=108) (N=192) (N=48)
10.0 0.277 0.262 0.264 0.265
12.0 0.140 0.135 0.132 0.133
14.0 0.081 0.075 0.073 0.077
16.0 0.263 0.247 0.240 0.250
18.0 0.382 0.359 0.350 0.363
20.0 0.452 0.424 0.412 0.429
22.0 0.487 0.456 0.444 0.463
24.0 0.500 0.469 0.457 0.476

7.0 CONCLUSIONS

For a fix rectangular bottom-mounted caisson, the present method shows some
improvement on horizonal force, vertical force as well as moment coefficient
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with lower number of panels. In terms of floating vessel, the present method
produce a more accurate results of added mass and damping for lower natural
frequancy which is less than 0.5 rad/s.
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Roll damping(non-dimensional),kg=5.988m
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Figure 6 Roll Damping (non-dimensional) with KG=5.998m.

Roll added mass(non-dimensional), kg=5.998
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Figure 7 Roll Added Mass (non-dimensional) with KG=5.998m.
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Figure 8 Sway Added Mass (non-dimensional).
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Sway damping(non-dimenslonal)
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Figure 9 Sway Damping (non-dimensional).
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