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ABSTRACT

In this work, three fourth-order-accurate, compact finite-difference schemes, namely, the
Hermitian (H), the cell-centered Hermitian (CCH) and the Spotz-Carey (S-C) schemes are
studied. The schemes are described and their accuracies are investigated using the one-
dimensional viscous Burgers equation as the testing model. Comparisons for the absolute, the
average and the maximum relative errors are shown. The effect of spatial step size, h, on the
accuracy of the selected schemes is investigated. A new procedure, for using the CCH scheme is
proposed and found to produce the least error. The new procedure utilizes a combination of a
fifth- and a sixth-order interpolation schemes. Other properties of the schemes, such as
additional relations required and ease of implementation are also discussed.

Keywords: High-Order Finite Difference, Burgers Equation

1.0 INTRODUCTION

High-order compact finite difference schemes have attracted the attention of
researchers due to their advantages over the traditional high order schemes. Many
research papers on developing and implementing such schemes have appeared in
the literature over the last 25 years.

Hirsh [1] has conducted numerical experiments with a class of O(h*)accurate

compact schemes. The idea behind his scheme is that the derivatives are treated
as unknowns at each point of the computational grid. Thus, for a second order
differential equation, a system of two high-order relations, known as Hermitian
relations [2] are used to evaluate the derivatives. Using the same approach, Adam
[2] has proposed the elimination of the second derivative either implicitly by
using the governing equation or explicitly by using another compact relation
between the first and the second derivatives.

High-order compact relations similar to those used by Hirsh [1] and Adam [2],
have been derived by Rubin and Khosla [3], and Goedheer and Potters [4] for
non-uniform meshes. Lele [5] has presented and analyzed more generalized
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forms of the Hermitian schemes and introduced the notion of resolution
efficiency as a measure of accuracy. Lele [5] has also developed compact
schemes for the approximation of the first and the second derivatives on a cell-
centered mesh, and has shown that the latter schemes have better resolution
characteristics.

Schemes underlying the Hermitian approach; have been utilized by many
researchers such as Cockburn and Shu [6], Haras and Ta’asan [7], Deng and
Maekawa [8], Ravichandran [9] and Fu and Ma [10]. The most recent papers of
Visbal and Gaitonde [11], Wilson et al [12], Ekaterinaris [13] and Reuter and
Rempfer [14] are also based on this approach.

A different approach for developing high-order compact schemes has been
presented by Spotz and Carey [15] and Spotz [16]. In this approach the governing
equation is utilized to approximate the leading truncation error terms of the
standard O(h*) central difference scheme. The resulting relation is then
differenced compactly and included in the finite-difference formulation. This
approach has been developed by MacKinnon and Carey [17] and Abarbanel and
Kumar [18] independently about the same time. Similar schemes were proposed
and used by Dennis and Hudson [19], Gupta et al [20] and Asrar et al [21].

It can be noted that all the high-order schemes cited in this review may be
grouped under two general approaches, namely, the Hermitian approach and the
Spotz-Carey approach. The objective of the present paper is to compare the
accuracy of the different O(h*) accurate compact schemes underlying these two

approaches.
The non-dimensionalized non-linear Burgers equation

du oJu %
—tU—=—— ; —9<x< 1
at+uax et 9<x<+9 (1

together with its analytical solution [22]

—2sinh x
= ()

coshx—e™

is selected as the test problem.

Three O(h*) descretization methods are selected and used to approximate the
space derivatives in Eq. (1), namely; 1- the original Hermitian scheme (H) as
presented by Hirsh [1] and Adam [2], 2- the cell-centered Hermitian scheme
(CCH) developed by Lele [5] and 3- the Spotz-Carey (S-C) scheme [13,14]. The
solution procedure is advanced in time by a standard fourth order Runge-Kutta
method.

In the following sections, descretization schemes are described; results and
comparisons in terms of absolute, average and relative error are shown. The
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effect of spatial step size h, on the accuracy of the different schemes is also
studied. Estimates of the spatial order of accuracy of the schemes are shown.

2.0 COMPACT O(h*) APPROXIMATIONS TO SPACE DERIVATIVES

2.1 The Hermitian (H) Scheme
In this scheme the governing equation (1) is approximated as

L uF, =S, 3)
ot

where F, and S, are approximations to the first and the second derivatives

14

respectively.
The fourth-order compact relations used to approximate F; and S, are [1,2]

1 1 3

ZFi-x +F, +ZE+1 = E(um —U;y) )
1 1 6

ESH +3; +I6Si+1 = gh_z(”m —2u; +uy,) 5)

These two relations yield tridiagonal systems of equations for F; and S,

requiring two additional boundary conditions. Following Adam [2]; the
approximations, S, are eliminated by utilizing equation (3) to give the tridiagonal

system

1 Ou_, Oou, 1 du, wu, —2u+u_ 1 5

— = i e (w,F., +u_F_)-—ulF, (6
12 o ot 12 o h? g nFi FaFi) =gy (©)

Thus only equation (4) is needed, with its boundary conditions, to be solved in
addition to (6). Equation (6) can be solved for the time derivatives —-;7‘ , and the

latter are then integrated in time.

2.2 The cell-centered (CCH) scheme
The most compact O(h*) approximation forms for the first and the second
derivatives on a cell-centered mesh developed by Lele [5] are

1 1 24

'2_2Fi—1 +F, +'2_2Fi—1 = '2'2_h(”i+1/2 —U;2) (7
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iSi—l +5; +_1_Si+1 =L62'
46 46 23h

(Wi1r2 = 2u; +u;y) (8)

It is necessary to use accurate interpolation schemes for the evaluation of the
mid-point values of u in (7) and (8). A sixth-order compact interpolation scheme
given by Lele [5], can be written as

3

Ui Tl +1_6“i+3/2 =2_0'

+u;) )]

i+1

3
E (B +u,._1)+z(u

In this study, however, unstable solution is observed when mid-point values

obtained from (9) are used in (7) and (8). Fifth-order left- and right- biased
interpolants used by Deng and Maekawa [8] are

—U -2 U2 +-—1-—u_i+3/2 = -l—uH +u, +lui+1 (10a)
2 10 10 2

+ N 1 1 1
Bu i-1/2 T U iv1/2 +-£u,.+3,2 =—u;, +u, +—u (10b)

2 i+1 10 i+2

In Ref. [8], these relations are used in Roe’s approximate Riemann solvers for
flux differencing. In the present work, the scheme (10) is utilized rather
differently. It is proposed, first, to use the average of the left- and right-biased
values in determining u,,,,, , such that

1
Wsain =5(u+i+1/2 + U i-12) (10c)

The mid-point values obtained from (10c) can be used directly in the high-
order relations (7) and (8). Alternatively, relation (8) can be eliminated by use of
the governing equation (3). Significant improvement over the H scheme is
observed in the results when relations (10) are used to approximate the
derivatives. Next, it is proposed to use a combination of the schemes (9) and (10)
and is found to produce striking results. The mid-point values obtained from

(10c) are used to approximate the first derivatives, F, and those obtained from
(9) are used to approximate the second derivatives, S,. Detailed results will be
shown for the combined scheme.

2.3 The Spotz-Carey (S-C) Scheme
In this scheme, the space derivatives in (1) are central differenced to give

2 13
ou, tu, Ui “Uin _ Ui "zuzi Tl +u; Ll L:

h_264u

12 9x* -0 an

i i

39



Jurnal Mekanikal, Disember 2002

The leading error terms are approximated to give an O(h*) method. This is
accomplished [15,16] by differentiating (1) to give

%u (u 9%
_ Ouy ou 12
,, [ataf(ax) +”ax21’ {2

which can be approximated as

ofu. —u u. —u_ Y u,. —2u +u
. i+1 i-1 4 i+1 i-1 + 14,- i+1 21' i-1 (13)
ot h 2h h

’u

o’

’u

o’

and similarly
ox*| | drox® ox Jox®  ox’ |

0 Uy, —2u; +u,, Uiy —Uy Y Uy — 20, U, a3u|
- I+ 1 1 + 1+ 1 1+ 1 1 +u 14
at[ h? ) 3( 2h h? |, C4

Equations (14) and (13) can be combined with (11) to yield the tridiagonal
system

du,, Ou, du,
a. i— + l+bl i+1 =—c,, 15
ot ot ' oot Sc' (13)

where
a, = i+—}—l—ui (16)
10 20
b, = i —ll—u,. an
10 20
and,
== 1 ui2 u1+1 —ut—l
¢ = (ui+1 —2u; tu,, h_z'*'T_ 3
(18)

40



Jurnal Mekanikal, Disember 2002

Thus, the system of equations (15) is solved for % which are then integrated by

the fourth-order Runge-Kutta method.

3.0 BOUNDARY AND INITIAL CONDITIONS

Boundary and near boundary grid points need special procedures as a result of
using high-order compact schemes. One-sided second- and third-order relations
for the first and second derivative approximations may be provided easily [1,2].
In the present study, however, in order to provide a sound basis for comparison
between the different schemes, boundary values of u and its space and time
derivatives are all assumed to be known and obtained by using Eq. (2). Boundary
conditions for the mid-point interpolation schemes are provided using the
following third-order relations [8],

5 9 1

Uiz +'2'u2+1/2 =E“1 +§u2 +Eu3 (19)

—Uy ayy Uy ) =— Uy +2u _ +iu 20)
N-3/2 TUN_1/2 N-2 N-1 N

2 16 8 16

The initial profile of u is generated from Eq. (2) for —9<x<9 at time
t =0.01such that a steep velocity gradient has appeared in the region close to
x=0.

4.0 DISCUSSION OF RESULTS

From stability constraints, the step sizes £ =0.2 and At =0.01are shown in [22]
to produce stable results for Eq. (1) with different low order finite-difference
methods. Numerical solutions of Eq. (1) obtained from the schemes H, CCH and
S-C with these step sizes are plotted in Figs. 1(a)-1(c) respectively, as well as the
analytical solution. The development of the velocity profile at four time levels, (t
=0.02, 0.1, 0.5, 1.0) are shown. All schemes exhibit stable solutions for the space
and time step sizes selected.

A comparison of absolute errors produced by the three schemes at time levels
(t = 0.02, 0.1,0.5) is shown in Figs. 2(a)-2(c). The absolute error is determined as
the absolute value of the difference between the analytical and the numerical
solutions. It is noted that the error produced by the CCH scheme is the lowest,
while the H scheme produces the highest error. It is also noted that as time
proceeds, the error produced by the different schemes smears spatially at different
rates. The error due to the S-C scheme smears spatially more rapidly than the H

41



Jurnal Mekanikal, Disember 2002

and the CCH schemes. Perhaps, it may be more convenient to compare in terms
of the average error, which represents the area under the absolute error curve for
the entire spatial domain at a given time. Fig. 3 shows the development of the
average errors with time for all the three schemes. Similar trends are exhibited by
the maximum relative error as shown in Fig. 4. It appears that the CCH scheme
provides the best results over the entire calculation period.

The effect of spatial step size h on the accuracy of the schemes is also
investigated and results for the average error at time level t = 0.5 are shown in
Fig. 5. The time step (Ar =0.01) is kept constant for all these calculations. The

order of accuracy of each of the schemes is estimated from the slope of the curve
and is shown in the legend. It is observed that the CCH scheme exhibits highest
order of accuracy and the S-C scheme shows the lowest.

In general, comparing the errors shows that the S-C scheme is better than the
H scheme for the range of spatial step sizes shown in Fig. 5 and the CCH scheme
is the best. However, if one considers the number of additional equations required
by each scheme during the calculation process, the CCH scheme requires the
maximum (5 as used here), the H scheme requires one, while the S-C scheme
requires no additional equation. It must be noted that the additional required
relations are tridiagonal algebraic systems that can be inverted easily. The cost of
solving the additional equations may partially be paid by using a coarse grid. For
example, if an average error of 0.001 is desired, it can be shown from Fig. 5 that
the CCH scheme requires about 18 and 20% less grid points as compared to the
S-C and the H schemes respectively. Moreover, the CCH schemes may provide
results comparable with those of the S-C scheme with only 3 additional relations.
This is achieved by using relations (10), as stated in Sec. 2.2, to evaluate
the F,'s and eliminating the S;'s. Results for the maximum relative error obtained

by the latter method are shown on Fig. 4 as the curve designated by CCHI.

Another important aspect that must be considered is the simplicity of
application. The H and the CCH schemes are easy to use and the high-order
relations as well as the interpolation schemes will not change if a new problem is
considered. On the other hand, the S-C scheme is algebraically involved and each
new problem requires a whole new approximation procedure. For multi-
dimensional problems the algebra required by the S-C scheme becomes
prohibitively complicated.

From the above discussion, it may be concluded that the CCH scheme has
preferable properties to the H and the S-C schemes.

5.0 CONCLUSIONS

The accuracy of three O(h*) compact schemes underlying two different

approximation approaches is investigated. The one-dimensional viscous Burgers
equation is used as a benchmark for testing and comparing the accuracies of the
methods. The CCH method is found to produce the least error when used with a
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combination of a fifth-order and a sixth-order interpolation schemes. Other
aspects, such as additional calculation procedures required by the schemes and
ease of implementation are also discussed.

ACKNOWLEDGEMENT

The authors acknowledge the support of the Ministry of Science and Technology,
Malaysia, under the IRPA grant no. 09-02-04-0179.

10.

11.

12.

13.

REFERENCES

. Hirsh, R., 1975, “Higher Order Accurate Difference Solutions of Fluid

Mechanics ProblemOs by a Compact Differencing Technique”, Journal of
Computational Physics, 19: 90-109.

Adam, Y., 1977, “Highly Accurate Compact Implicit Methods and Boundary
Conditions”, Journal of Computational Physics; 24: 10-22.

Rubin S.G, and Khosla, PK., 1977, “Polynomial Interpolation Methods for
Viscous Flow Calculations”, Journal of Computational Physics, 24: 217-244.
Goedheer, W.J. and Potters, JH-H.M. 1985, “A Compact Finite Difference
Scheme on a Non-Equidistant Mesh”, Journal of Computational Physics; 61:
269-279.

Lele, SK., 1992, “Compact Finite Difference Schemes with Spectral-Like
Resolution”, Journal of Computational Physics; 103: 16-42.

Cockburn, B. and Shu, C.W., 1994, “Nonlinearly Stable Compact Schemes
for Shock Calculations”, SIAM Journal on Numerical Analysis, 31: 607-
627.

Haras, Z. and Ta’asan, S., 1994, “Finite Difference Schemes for Long-Time
Integration”, Journal of Computational Physics, 114: 265-279.

Deng, X. and Maekawa, H., 1997, “Compact High-Order Accurate Nonlinear
Schemes”, Journal of Computational Physics 1997; 130: 77-91.

Ravichandran, K., 1997, “Higher Order KFVS Algorithms Using Compact
Upwind Difference Operators”, Journal of Computational Physics; 130: 161-
173.

Fu, D. and Ma, Y., 1997, “A High Order Accurate Difference Scheme for
Complex flow Fields”, Journal of Computational Physics; 134: 1-15.

Visbal, M.R. and Gaitonde, D.V., 1999, “High-Order-Accurate Methods for
Complex Unsteady Subsonic Flows”, AIAA Journal; 10: 1231-1239.

Wilson, R.V., Demuren, A.O. and Carpenter, M., 1998, “High-Order
Compact Schemes for Numerical Simulation of Incompressible Flows”,
ICASE Report No. 98-13, NASA/CR-1998-206922.

Ekaterinaris, J.A., 2000, “Implicit High-Order-Accurate-in-Space Algorithms
Jor the Navier-Stokes Equations”, AIAA Journal, 38: 1594-1602.

43



Jurnal Mekanikal, Disember 2002

14.

15.

16.

17.

18.

19.

20.

21.

22,

44

Reuter, J. and Rempfer, D., 2000, “High Order Vorticity-Velocity Method for
the Simulation of Pipe Flow Transition”, Applied Numerical Mathematics,
33: 105-111.

Spotz, W.F. and Carey, G.F., 1996, “High-Order Compact Finite Difference
Methods”, In Proceedings of the 2" International Conference on Spectral and
High Order Methods, University of Houston, PP. 397-407.

Spotz, W.F., 1995, “High-Order Compact Finite Difference Schemes for
Computational Mechanics”,. Ph. D. Dissertation, The University of Texas at
Austin.

MacKinnon, R.J. and Carey, G.F., 1988, “Analysis of Material Interface
Discontinuities and Superconvergent Fluxes in Finite Difference Theory”,
Journal of Computational Physics, 75: 151-167.

Abarbanel, S. and Kumar, A., 1988, “Compact High-Order Schemes for the
Euler Equations”, Journal of Scientific Computing, 3: 275-288.

Dennis, S.C.R. and Hudson, J.D., 1989, “Compact h* Finite-Difference
Approximations to Operators of Navier-Stokes Type”, Journal of
Computational Physics, 85: 390-416.

Gupta, M.M., Manohar, R.P. and Stephenson, JW., 1984, “A Single Cell High
Order Scheme for the Convection-Diffusion Equation with Variable
Coefficients”, International Journal for Numerical Methods in Fluids, 4: 641-
651.

Asrar, W., Basri, S. and Arora P.R., 2000, “High Order Compact Solution of
the Transient Diffusion Equation”, Journal — Institution of Engineers,
Malaysia, 61: 41-46.

Hoffmann, K.A. and Chiang, S.T., 1993, “Computational Fluid Dynamics for
Engineers”, 1. Engineering Education System, USA, P 265.



10

S 0 !
-5 -
-10 T
-5
10 ¢ (b) o =0.02
i CCH Scheme tnl)1
5 ©  1=05
o t=1.0
5 0 L Analytic
-5
-10 _ (] L I L 1
-5 0 5
X
10 L () o t=0.02
S-C Scheme & =01
© t=0.5
o

-10 |

Figure 1 Solution of the Burgers equation by the different schemes
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Figure 5 The Effect of step size h, on accuracy at time level t = 0.5
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