


Jurnal Mekanikal
Jun 2002, Bil. 13, 50 - 63

INTELLIGENT ACTIVE FORCE CONTROL OF A ROBOTIC
ARM USING GENETIC ALGORITHM

Musa Mailah'
Wong Min Yee
Hishamuddin Jamaluddin

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia
81310 Skudai, Johor
MALAYSIA
Email: musa@fkm.utm.my

ABSTRACT

The main requirement of an active force control (AFC) applied to a dynamical system is the
estimation of the inertia matrix, IN to compensate for the disturbances and uncertainties in the
system. In this paper, genetic algorithm (GA) is used to estimate suitable value of IN of a robotic
manipulator necessary for the implementation of the AFC strategy through a simulation study. A
set of constant torques at the joints is deliberately introduced as the disturbance mechanism to
test the effectiveness of the proposed scheme. The results show that the GA used in the study being
a stochastic and global optimizer successfully computes appropriate IN value to effect the control
action. The proposed scheme exhibits a high degree of robustness and accuracy as the track error
is bounded within an acceptable range of value even under the influence of the introduced
disturbance.

1.0 INTRODUCTION

Robot force control is concerned with the physical interaction of the robot’s end
effector with the external environment in the forms of applied forces/torques,
changes in the mass payloads and constrained elements. A number of control
methods has been proposed to achieve stable and robust performance ranging
from the classical proportional-derivative (PD) control [1] to the more recent
intelligent control technique. A system is said to be robust when the system
performs with acceptable degree of accuracy, stability and reliability in the
presence of disturbances, parametric uncertainties and varied operating
conditions. The PD control is simple, efficient and provides stable performance
when the operational speed is low and there are very little or no disturbances. The
performance however is severely affected with the increase in speed and presence
of disturbances. Adaptive control technique have been proposed [2, 3, 4] and to a
certain degree succeeded in overcoming this problem - providing better
performance and robustness in a wider range of system operating parameters but
at the expense of involving complex mathematical manipulation. The
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implementation of the adaptive control method in real time poses a problem due
to the complexity of the models involved and more often than not, most of the
works are done through simulation. There is an emerging class of adaptive
control methods are increasingly being used in robotic systems [5, 6, 7]. Active
force control (AFC) has been demonstrated to be superior compared to the
conventional methods [8, 9] in dealing with compensating a variety of
disturbances. A distinct advantage about this method is the practical realization of
the system in which the method bases its concept on using mainly the estimated
or measured values of certain parameters to effect its compensating action. AFC
has a fast decoupling property and it can be applied to variable loading
conditions.

Since late 1980’s, researchers have tried to implement the artificial intelligent
methods, i.e., artificial neural network (ANN), evolutionary computation (EC),
and fuzzy logic in robot control to either function as a robot controller itself, or as
part of the controller system. More recently, some researchers have incorporated
genetic algorithm (GA) to control the robot. Some of them incorporate the GA
with other classical controller such as PID controller, and some incorporate the
GA with the ANN controller. In this paper, a GA-based AFC method is used to
control a rigid two-link horizontal planar robotic arm. GA is used to estimate the
inertia matrix of a robot arm, which is required in the AFC feed forward loop.
The effectiveness of this scheme to compensate external disturbances is studied
from the track error plotted. We called the scheme AFCAGA - an acronym for
Active Force Control And Genetic Algorithm.

This paper is organized as follows. Section 2 presents a description of the
problem statement. Sections 3 and 4 cover the fundamentals of both the AFC and
GA. The dynamic model or the general equation of motion of a robot manipulator
is described in Section 5. The integration of GA and AFC is applied to the
manipulator and subsequently, the simulation results are studied and discussed in
Section 6. Finally, the conclusions are given in Section 7.

2.0 PROBLEM STATEMENT

AFC is a force control strategy originated in [8, 10] and is primarily designed to
ensure that a system remains stable and robust even in the presence of known or
unknown disturbances. In AFC, the system mainly uses the estimated or
measured values of a number of identified parameters to effect its compensation
action. In this way, we can reduce the mathematical complexity of the robotic
system, which is known to be highly coupled and non-linear. However, the main
drawback of AFC is the acquisition of the estimated inertia matrix that is required
by the AFC feed-forward loop. Previous methods rely heavily on either perfect
modeling of the inertia matrix, crude approximation or the reference of a look-up
table, which obviously require prior knowledge of the estimated inertia matrix.
Although the methods are quite effective to implement, they lack in systematic
approach and flexibility to compute the inertia matrix. Thus, a search for better
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ways to generate efficiently suitable estimated inertia matrix is sought. If a
suitable method of estimating the inertia matrix can be found, then the practical
value of implementing AFC scheme is considerably enhanced. Obviously,
intelligent methods are viable options and should be exploited to achieve the
objective as already described in [11, 12]. While there are some other adaptive
techniques used to solve this difficulty, we propose yet another strategy, which is
simple, effective and globally optimum, to be incorporated into the AFC method
to control the robot arm. The learning approach applied is through the use of
genetic algorithm. In this method, the inertia matrix (IN) of the arm in the AFC
controller is estimated automatically via GA as the arm is commanded to execute
a prescribed task accurately even in the presence of disturbances.

3.0 ACTIVE FORCE CONTROL (AFC)

The full mathematical analysis of the AFC scheme can be found in [8, 13]. It has
been shown that disturbances can be effectively eliminated via the compensating
action of the AFC strategy. Figure 1 shows a schematic of AFC scheme applied
to control a robot arm.
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Figure 1 The AFC scheme applied to a robot arm

The notation used in Figure 1 is as follows:

) vector of positions in joint space
K,.Ks PD controller gains

K, motor torque constant

I current command vector

I compensated current vector

I; armature current for the torque motor
IN estimated inertia matrix

T* estimated disturbance torque

T, applied torque (measured)
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X, Xper ~ vectors of actual and desired positions respectivelyin Carresian
space

6.s, x.y reference acceleration vectors in joint and Cartesian spaces

In AFC, it is essential that we obtain the physical measurements of the

acceleration () of the arm and the actuated torque (7,) using accelerometer and
torque sensor respectively as can be seen in Figure 1. Next, the estimated inertia
matrix of the arm (IN) has to be appropriately identified by suitable means. In
this way, we could estimate the disturbances based on the measured or estimated
values of the variables and could be expressed as follows:

To*=T,-IN 6 (1)
Equation 1 can be further simplified as
T;*=K 1,-IN 0 )
where
T,=K I, 3)

In this case, instead of measuring the torque directly, we measure the torque
current I, and then multiply this value with the torque constant K, which of course
gives the value of the required actuated torque. While the measurement part is
obvious, the inertia matrix can be obtained using a number of methods such as
crude approximation, reference of a look-up table or intelligent method. Note that
the arm is assumed to operate horizontally; hence we consider only the diagonal
elements of the estimated inertia matrix IN and that for convenience we denotes
these as IN”=IN; and IN22=IN2. The off-diagonal terms IN;Q and INQ; are
disregarded, i.e., IN;2=IN;;=0, since it has been shown that this coupling term can
be safely ignored by AFC strategy [8].

In addition to the above, we include a PD controller employing resolved
motion acceleration control (RMAC) as described in [13] which can improve the
overall performance of the control scheme. RMAC is governed by the following
equation:

Xt = Xoar+ Ky (bar— %) + K, (X, — %) @)

In AFC, it is shown that a robotic system subjecting to disturbances remains
stable and robust through the compensating action of the control strategy. In other
word, the system remains stable in the presence of “noises”. The main
computational burden in AFC is the multiplication of the estimated inertia matrix
(IN) with the angular acceleration of the arm before being fed into the AFC feed-
forward loop. Apart from that, the output of the system, e.g., Cartesian position
needs to be computed from the joint space via forward kinematics and also the
controller prior to the AFC loop is determined. Knowing that the performance of
the AFC depends mainly on how appropriate the inertia matrix of the robot arm is

53



Jurnal Mekanikal, Jun 2002

estimated, thus in this paper, the estimation of inertia matrix through the use of
genetic algorithm is attempted. A brief but adequate description of the theoretical
background of GA and its application to robot control will be given in the
following section.

4.0 GENETIC ALGORITHM (GA)

Genetic algorithm search method is rooted in the mechanism of evolution and
natural genetics. The interest in heuristic search algorithms with underpinnings in
natural and physical processes began as early in 1970s, when Holland first
proposed the concept of genetic algorithm [14]. Genetic algorithms generate a
sequence of populations using selection and search mechanisms involving the
process of crossover and mutation.

4.1 Structure and Mechanism of Genetic Algorithm

Genetic algorithm operates on a population of potential solutions applying the
principle of survival of the fittest to produce better and better approximations to a
solution. At each generation, a new set of approximations is created by the
process of selecting individuals according to their level of fitness in the problem
domain and breeding them together using operators borrowed from natural
genetics. This process leads to the evolution of populations of individuals that are
better suited to their environment than the individuals that they were created
from, just as in natural adaptation. As illustrated in Figure 2, at the beginning of
the computation, a number of individuals (population) is randomly initialized.
The objective function is then evaluated for these individuals. The first/initial
generation is produced. If the optimization criteria are not met, the creation of a
new generation starts. Individuals are selected according to their fitness for the
production of offspring. Parents are recombined to produce offsprings. All
offsprings will be mutated with a certain probability. The fitness of the offspring
is then computed. The offsprings are inserted into the population replacing the
parents, producing a new generation. This cycle is performed until the
optimization criteria are reached.

4.2 Genetic-Based Active Force Control
As mentioned earlier, GA is applied to estimate the inertia matrix of a robot arm
in the control loop. Based on the information of the track error (denoted by e),
GA is applied to estimate IN and fed it again into the AFC loop as can be
observed in Figure 3. The cycle will be continued until a set of appropriate IN
value is obtained.

Figure 4 shows the proposed AFCAGA control scheme and how the GA
component is embedded into the control strategy as the IN estimator. The box
(dashed-line) represents the essence of the AFC mechanism.
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Figure 3 GA for optimizing the inertia matrix, IN
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Figure 4 AFCAGA control scheme

5.0 MATHEMATICAL MODEL OF THE ROBOT ARM

The dynamic model or the general equation of motion of a robot manipulator [15]
can be described as follows:

T, = H@®)® + h(0,0)+ G() + Ty (5)
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where
Ty vector of actuated torque
H NxN dimensional manipulator and actuator inertia matrix
h vector of the Coriolis and centrifugal torques
G: vector of gravitational torque

Ty vector of the disturbance torque

(x,y)

L length of link-1

I length of link-2

01 rotation of link-1

0, rotation of link-2

(xy) end-point position of
arm in Cartesian space

Figure 5 A representation of a rigid two-link planar arm

For the horizontal two-link rigid planar manipulator shown in Figure 5, its
dynamic model is given by,

qu = H] 191 5 H1282 = hez = 2}’18192 (6)

Tyo = Hp0p + HypB) — ho,* (7
where

H“ = MZICIZ 2 I] + m;;_(lr:iz + 3622 + 2.{1162 cosB)+ 12

le = H21 = m2£1lc‘2 cosO+ m21c22 + 12

Hyy = m2[C22 +1;

h= lellcz sin 92

where

I mass moment of inertia of the link

m mass of the link

| length of the link

I. length of link from the joint to the center of gravity of the link

The gravitational term of the general equation of motion of the arm has been
omitted since the arm is assumed to move only in a horizontal plane. As can be
seen from Equations (6) and (7), the system is highly coupled, as the motion of
second link will affect the dynamic behavior of first link, and vice versa. The
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coupling property adds to a certain extent a degree of difficulty in controlling the
robot arm effectively. Thus, the dynamic model is reduced to

T, = H®)0 + h(0,0)+T, 8)

6.0 SIMULATION

Simulation of the control scheme is performed using MATLAB and SIMULINK
together with GEATbx (Genetic Evolutionary Algorithm Toolbox).

6.1 Simulation Parameters
The parameters used in the simulation are given as follows:

Robot parameter:

Link length: [} =0.25m [,=0.2236m
Link masses: m; =0.3kg my = 0.25kg
Motor masses: moty; = 1.3kg moty; = 0.8kg
Payload mass: motz = 0.1kg
Controller parameters: -
AFC controller gains: K,=750/ s K; =500/ s
Motor torque constants: K, =0.263 N/A
AFC constants: K.=1.0
GA parameter:
Range of IN (kgm®): 0 <IN, <0.15 0 <IN, <0.01
Number of generation: 50
Objective function: Fitness function, f = ﬁ
+

where E = i}e(r)‘
=0

Crossover probability: 0.25
Mutation rate: 0.035
Genes per parameter: 10

Simulation is performed with a set of constant torques, 7, introduced at the
joints incrementally vary from 10Nm to 50Nm. A number of results were
obtained and evaluated based on the different values of 7T, In GA, fitness
function has been chosen to evaluate the objective function using the equation

le

1+E
trajectory is complete.

where E is sum of the track error from rest until a full circular
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6.2 Prescribed Trajectory
A circular trajectory is generated considering the following time (t) dependent
functions for the Cartesian coordinate:

Xy = 0.25+0.1cos(-2x 1) )
Xpors = 0.2+0.1sin(Ze 1) (10)

where the introduced endpoint tangential velocity, V. is assumed to be 0.5m/s.

Figure 6 illustrates the desired trajectory of the arm.

Desired trajectory of the arm
0.25
0.2

:a{m; : 3 :
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5 3 3 :
0 0.1 0.2 0.3 0.4
x; {m}

Figure 6 The desired trajectory of the arm

6.3 Results and Discussion

Table 1 shows the performance of GA with various magnitudes of constant
torque, Ty at the joints. The performance of GA is measured by the fitness and the
track error of the best individual found in the whole simulation run. The same
result is also illustrated in Figure 7. In each generation, the best individual is

- . . 1
traced by its highest fitness value or the lowest track error since [ =——

1+E’
where f is the fitness value while E the sum of all track error sampled along a
complete trajectory cycle. It should be noted that f < 1 for E > 0. It can be seen
that when the introduced T, increases, the performance of GA will generally
decrease. This finding is as expected because the increasing value of 7, will have
proportional effect to the level of the difficulty in the GA mechanism to estimate
suitable IN value for AFC to accomplish the compensation process. However, the
GA technique is able to adapt satisfactorily to this occurrence since the
performance of GA is observed to be minimally affected. The statistical results
show that, for every 1 Nm increase in 7y, the sum of track error, E of the best
individual found by GA at the end of simulation will only increase by 7.2 x 10™
m. In other words, the average sensitivity of E to Ty caused by variation in the
GA parameter is 7.2 x 10 m.

Table 1 Summary of the results obtained
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T, (Nm) 10 20 30 40 50
E (m) 0.0649 0.0717 0.0705 0.0738 0.0937
Best fitness 0.9391 0.9331 0.9342 0.9313 0.9143
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10 20 30 40 50
T (Nm)

Figure 7 Track error versus constant disturbance torque at the joints, 7,

Figure 8 shows optimum inertia matrix, IN, versus T4 In general, IN; is
greater than IN; as expected since the inertia at joint one is always greater than
joint two. The results show that the approximate range of IN; is 0.045 - 0.06
kgm? while IN; 0.005 - 0.01 kgm?. It can also be observed that the GA has shown
its ability to adapt the IN value to different working environment in terms of Ty

0.07

N1

0.01 - INZ
R

0 A . N .
10 20 30 40 50
T, (Nm)

Figure 8 Optimum IN versus T

Figure 9 depicts the trace of the best fitness found along the generation in an
arbitrary simulation. Here, a sample of T; = 50 Nm is shown. As can be seen in
this figure, the GA has found a best individual of fitness 0.9143 at generation 47.
Even though, as a stochastic and global optimizer, GA keeps searching for other
possible peaks, which may be higher than the currently found peak.

Figures 10-15 show the track errors of AFCAGA scheme for different T4 at the
joints. The general trend of most of the error curves is converging with time
signifying that the estimated inertia matrix of the arm is appropriately identified
and adapted to the conditions imposed. Note that the maximum error occurs at
the beginning of the operation. This is mainly due to the inherent static friction
of the robotic system. When there is no disturbance (7= 0 Nm), the maximum
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(*Global optima: best found solution throughout the simulation)
Figure 9 Best fitness versus number of generation
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Figure 10 Track error along the trajectory for 7,=0 Nm
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Figure 11 Track error along the trajectory for 7= 10 Nm
error along trajectory is about 1.3 mm. When 7; = 50 Nm, the maximum error is
2 mm. This shows a slightly decreasing performance of AFCAGA with the

increase of Ty However, as a whole, the performance of system with the presence
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of disturbances is still considered robust. In all cases, the proposed scheme is able
to ‘absorb’ all the disturbances effectively without degrading the system’s
performance. Thus, AFCAGA scheme exhibits a high degree of robustness and
accuracy as the track error is successfully bounded within an acceptable range (0
- 3mm). The track error within this range implies that the end effector follows or
tracks the trajectory very well and almost resembling the desired trajectory.
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Figure 12 Track error along the trajectory for T;= 20 Nm
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Figure 13 Track error along the trajectory for T;= 30 Nm
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Figure 14 Track error along the trajectory for 7,= 40 Nm
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Figure 15 Track error along the trajectory for 7= 50 Nm

7.0 CONCLUSIONS

The genetic algorithm embedded in the AFC scheme used in the study has been
shown to be very effective in generating the required estimated inertia matrix
automatically, which when implemented to the main control scheme with or
without disturbances, produce favourable results. Thus, the integration of the GA
in the AFC strategy is shown to be feasible and implementable. The trajectory
track error obtained is reasonably small showing the excellent capability of
AFCAGA scheme to accommodate the disturbances. For future development, this
work can be extended by taking into account other form of complicated
trajectories within the robot workspace. Also, other forms of disturbances and test
trajectories can be considered to further investigate the robustness of the system.
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