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ABSTRACT

This work involves the application and testing of a Hermitian fourth-order accurate compact
JSinite-difference scheme for solving the two-dimensional, incompressible, Navier-Stokes equations
in vorticity-stream function form. The steady, laminar flow in the inlet section of a 2-D channel
and the flow in a driven square cavity are studied. The time dependent form of the Navier-Stokes
equations are solved by an implicit ADI procedure until the steady state solutions are obtained.
Results obtained are found to compare Javorably with data published in the literature.
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1.0 INTRODUCTION

High-order compact schemes have attracted much attention in recent years due to
their narrow grid stencil and a possible enhanced accuracy over the non-compact
schemes [1]. Different approaches for high-order compact spatial discretization
have been proposed during the last 25 years.

Hirsh [1] has conducted numerical experiments with a class of fourth-order
accurate compact schemes known as Hermitian. The fundamental idea behind
this scheme is that the derivatives are treated as unknowns at each point of the
computational grid. A system of high-order relations is then needed to
approximate the derivatives. To reduce the number of additional equations, Adam
[2] has proposed two different techniques to eliminate the second order
derivatives in parabolic equations. Adam [2] has also derived additional boundary
relations to solve the resulting tridiagonal system of equations.

Lele [3] has presented and analyzed more generalized forms of the Hermitian
schemes and introduced the notion of resolution efficiency as a measure of
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accuracy. Lele [3] has also developed compact schemes for cell-centered meshes.
The Hermitian approach has been used by many other workers [4-6].

Rubin and Khosla [7] and Luchini [8] have developed high-order compact
schemes from interpolating polynomials. A different approach for obtaining high-
order compact schemes has been developed by MacKinnon and Carey [9] and
Abarbanel and Kumar [10] independently about the same time. The technique is
based on the spatial implementation of the temporal differencing idea of Lax and
Wendroff [11]. In this approach the governing equation is utilized to approximate
the leading truncation error terms of the standard O(h2 ) central differencing
scheme. The schemes developed and used by [12-14] are based on this approach.

It can be noted that all the high-order schemes cited above may be grouped
under three general approaches, namely, the Hermitian, the interpolation
polynomial and the Lax-Wendroff approaches. The most popular approach seems
to be the Hermitian due to its spectral-like characteristics [3] and ease of
implementation.

This work is motivated by the desire to develop an algorithm for solving the 2-
D Navier-Stokes equations in vorticity-stream function form using a fourth-order
Hermitian compact scheme. The problems of laminar incompressible fluid flow
in the inlet section of a 2-D channel and the driven cavity flow are considered as
testing models. Results are compared with data published in the literature.

2.0 THE FOURTH-ORDER COMPACT SCHEME

As mentioned above, the high-order accuracy of the Hermitian scheme is
achieved by treating the derivatives as unknowns at the grid points and
calculating them from implicit high order relations. A fourth-order approximation
to the first derivative, F, for the function, f; can be obtained by [1,3]

0.25F,, + F; +0.25F,, =15 (Lﬂz‘h_f,lj 5

where 4 is the mesh size.
The fourth-order approximation S, to the second derivative is written as [1,3]

g | 5 i
0.1S,, +8, +0.1S,,, :1.2(1‘&1 hj:, +f,_1] o

Boundary conditions for the first and second derivatives must be provided in
addition to those of the governing equations. A review of various possible
approaches for obtaining boundary relations is presented in [15]. In this work the
following high-order implicit relation [15] is used as a boundary relation for the
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first derivatives, whereas second derivatives are evaluated by satisfying the
governing equations on the boundaries.

1

h h?
fi S+ 5 E+ Fo)+ (8, = 8.)+ O )= 0 ®)

3.0 METHOD OF SOLUTION

The fourth-order compact scheme is used to solve the two-dimensional,
incompressible Navier-Stokes equations in vorticity-stream function (¢ '- ) form.
The unsteady equations for the vorticity and stream function in non-dimensional
form are [1,12]

2 2
TR el s @
at ax ay Re ax ay
6 62 62
b I “‘/2’ + 2V .
ot Ox By
Eqs. (4) and (5) are discretized by an ADI procedure [1] to give
T G X Yz
1 . (
= R—e(SXZijk 1/2 +SYZij./ ) )
ﬁ(gijkﬂ _é,ijlprl/z)+ uiijXZUkn/z n VkFYZl.ij
1 k+1/2 ksl
= R—e(SXZ[j +S8YZ,") (6b)
M(WUMM _"”ijk)‘gijk+1 = Sxy, """ +SYy " (7a)
ﬁ(%ykﬂ _l//ijlm/z)_gijk+1 = SX(//iij/z +SY‘/’gk+l (7b)

where FXZ, FYZ, SXZ, SYZ, SX and SY are the fourth-order approximations to

og /ox, 8¢ /oy, 8*C/ox®, 9°¢/ox*, °w/ox® and 8%y /dy® respectively. The
superscript £ corresponds to the previously computed or known values, k+1/2
denotes the unknown values at the half-time step and k+/ is the new time level.
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Starting with Egs. (6), at each half-time step of the ADI procedure a block

tridiagonal matrix is inverted for ¢ and its derivatives. Eq. (6a) and the two high-

order relations (1) and (2) are solved first for the unknowns ¢,

FXZ ijk“u and SXZ ijk“/z in the x-direction (x-sweep). Then, Eq. (6b) with the two

high-order relations, are solved for the unknowns ¢ ijk“ , F YZl.j.k+1 and SYZ,.jk+l in

the y-direction (y-sweep). A time-step is considered complete once x-sweeps for
all the rows followed by the y-sweeps for all the columns are completed. The
stream function values are updated at the new time level k+1, by solving Egs.
(7a) and (7b) in the same manner.

4.0 RESULTS

The following two problems are solved by the method just described.

Problem 1. Laminar flow in the inlet section of 2-D channel:

The flow geometry is shown in Fig. 1. Due to symmetry, only the upper half of
the channel is considered. The computational domain starts at a distance Ly
upstream the leading edge of the channel and extends to a distance Lp
downstream the leading edge. Spotz [12] has shown that for low Reynolds
number (Re — 0), the effects of the plates can be felt reasonably ahead of the
leading edge, requiring at a minimum that Ly =2H. Lp is long enough for the

flow to become fully developed. The boundary conditions are as follows:
At the upstream boundary,

u=1,v=0 w=y, {=0.

At the downstream boundary,
3 2 3 1 ,
u==(1-y),v=0py==—y——y,¢=3y.
=7 ) =3yl s b =3p
Along the plate, where x >0,y =1,

u=0,v=0,p =1.

The vorticity, along the wall is obtained by writing Eq. (3) for the stream
function i on the plate. The remainder of the top boundary, where y = 1, x <0,

w=1v=0¢=0.
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Along the lower boundary, which is a symmetry line,
w=0,v=0,{=0.

The x-component of the velocity, u, on the top and bottom symmetry lines is
calculated as a part of the solution. Solutions are obtained for Reynolds numbers
Re = (.5 and Re = 50 on uniform grids 65x9 and 99x9, respectively. The studied
Reynolds numbers are the same as those considered by Spotz [12], for
comparison. In Figs. 2-4 stream function contours, vorticity contours and x-
component of the velocity along the center streamline and the stagnation stream
line are compared with the high-order results of Spotz [12]. Figs. 5-7 present the
same type of plots for Re =50. All these comparisons show that the present
results are identical with Spotz s’ [12] high-order results.

Problem 2. The driven cavity flow:

The geometry of this problem consists of a square cavity [0,1] x [0,1], as shown
in Fig. 8, filled with an incompressible fluid. At the initial time the upper wall is
given a unit velocity and the final steady state solution is sought. The boundary
conditions that can be specified are, on the four walls

v = const =0,

87 o PH
Ox oy
and
2 2
aVj:O, 61/2/:—{, x=0and x =1,
oy’ Ox
2 2
aVI:O, aW:—é’, y=0andy=1.

ax2 ay2

The boundary values for vorticity along the four walls are obtained by writing
Eq. (3) for the stream function along the walls. The velocity boundary conditions
on the four walls are shown in Fig. 8. This problem has been solved by Hirsh [1]
using the same technique for Re = 100, and by others using different techniques.
In this study solutions are obtained for Re = 100 and Re = 1000 on 21x21 and
41x41 grids respectively. Fig. 9 shows the vorticity and stream function contours
for Re = 100. The contour levels plotted correspond with the values plotted by
Hirsh [1]. Qualitatively, the plots appear to be identical.

In Figs. 10-12 the vorticity along the wall, the horizontal velocity u along the
vertical centerline and the vertical velocity v along the horizontal centerline are
compared with a second order central difference CD scheme on 21x21 grid and
with the results of Ghia et al [16] on 129x129 grid. The present results are
comparable to the results from the fine grid in [16]. Figs. 13-15 are the same type
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of plots for the case Re = 1000 on a 41x41 grid. Present results for this case are
also in good agreement with results from the fine grid in [16].

5.0 CONCLUSIONS

A fourth-order Hermitian compact finite-difference scheme has been successfully
applied for solving the two-dimensional, incompressible Navier-Stokes equations
in vorticity-stream function form. The steady, laminar flow in the inlet section of
a 2-D channel and the flow in a driven square cavity have been chosen as test
cases to determine the accuracy of the scheme. An implicit ADI time marching
procedure is employed until the steady state solutions are obtained. Results
obtained compare favorably with a standard second order central difference and a
multi-grid fine-mesh solution.
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Figure 2 Stream function contours for the 2D channel problem, Re = 0.5
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Figure 3 Vorticity contours for the 2D channel problem, Re = 0.5
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Figure 4 Stream function contours for 2D channel problem, Re = 50
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Figure 5 Vorticity contours for the 2D channel problem, Re = 50
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Figure 6 Stagnation and centerline velocity plots for 2D channel problem, Re = 0.5
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Figure 7 Stagnation and centerline velocity plots for 2D channel problem, Re = 50
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Figure 8 Schematic of driven cavity
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Figure 9 Vorticity and stream function contours for the driven cavity problem, Re = 100
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Figure 10 Vorticity along the moving wall , Re =100
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Figure 11 Horizontal velocity component along the vertical centerline, Re = 100
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Figure 12 Vertical velocity component along the horizontal centerline, Re = 100
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Figure 13 Vorticity along the moving wall, Re = 1000
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Figure 15 Vertical velocity component along the horizontal centerline, Re = 1000
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