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ABSTRACT

In this paper a high-order compact solution is presented for the transient diffusion equation
subject to both homogeneous as well as insulated boundary conditions. The finite difference
scheme is fourth order accurate both in space and time. The central difference scheme is used to
approximate the space derivatives. The higher order terms in the T aylor series expansion are
approximated using the governing differential equations. The difference equations are integrated
by applying a Runge-Kutta scheme. Numerical results are compared with exact solutions.
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1.0 INTRODUCTION

The finite difference method of solving partial differential equations involves
discretizing the domain of interest into a grid on which a discrete approximation
to the governing differential equation is applied. While the central difference
scheme can give an O(h’) accurate result without any difficulty. In order to
obtain results of higher accuracy the size of the mesh (i.e. k) needs to be reduced
thereby increasing the size of the matrix. One can resort to O(h*) accurate
formulation using the central difference scheme but this will increase the matrix
density and bandwith and hence the cost of the computation. Also the
approximations to the boundary conditions are more complicated. Methods,
which have accuracy more than O(4?) are called higher-order methods. These
methods are desirable because they allow for coarser meshes thereby reducing the
computational effort.
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The usual procedure for obtaining higher-order accuracy is to include
additional grid points into the approximations for the derivatives. These methods
though of higher order yield non-compact stencils. They use grid points located
beyond those directly adjacent to the node at which the derivative is being
approximated. This increases the matrix bandwidth and complicates formulation
near boundary nodes. Such methods have been widely used [1, 2, 3,4, 5, 6, 7].
Compact formulations of higher-order methods are desirable because of reduced
matrix bandwidth and ease in approximating derivatives at points near the
boundaries. Such schemes were studied by several researchers [8, 9, 10, 11].

Abarbanel and Kumar [12] developed a High-Order Compact (HOC) scheme
for Euler equations. Similar schemes have been proposed HOC schemes having
fourth and sixth order accuracy for incompressible flows [13. 14. 15, 16, 17, 18].

In this paper the transient heat diffusion equation in the one-dimensional form
is considered. The scheme used in this paper increases the accuracy of the usual
central difference scheme from O(K%) to O(h") by including compact
approximations of the truncation error terms. It is based on an idea of
MacKinnon and Carey [21]. Both Dirichlet and Neumann boundary conditions
are applied. The technique developed by Spotz [19, 20] is used to approximate
the space derivatives. This technique uses the Crank-Nicolson method to
discretize the time derivatives resulting in a second order accurate formulation in
time, an effort has been made to use the fourth order Runge-Kutta method to
integrate the difference equations. This increases the accuracy to fourth order in
the time domain as well, resulting in an overall accuracy of fourth order in space
and time.

2.0 PROBLEM STATEMENT

We consider the standard one dimensional transient linear heat conduction
equation [22] with constant material properties.

U = czuxx (1)

Where u is the dimensionless temperature, ¢’ is thermal diffusivity, the subscript ¢
refers to partial derivatives with respect to time and the subscript x refers to
partial derivatives with respect to the space variable x.

Along with the homogeneous conditions
u(0,8) = 0,u(L,t)=0 (2)
and initial condition:
u (x,0) = g(x) €)
Equation (1) represents a model of the physical problem shown in Figure 1.
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Figure 1 One-dimensional heat conduction, conducting boundaries

2.1  High Order Compact Formulation
Substituting central differences into Equation (1) we get :

c2

( ) 3
U, ;= —W;q . —2u, +u, . |-
[ h2 i+l, j L i-1,j

ey +O(h* 4
T (n") “4)

where 7 is the increment the subscript i refers to the nodal position in the x-
direction, and the subscript j is an index for time.

Differentiate Equation (1), we obtain:

1
uxxxx,j = c_z Upex (5)

Substituting Equation (5) into Equation (4) and rearranging it can be written as:

h? c?

4
Uy, ; + Eutxx=h_2(ui+l,j_2ui,j+ui—1,j)+0(h ) (6)

Substituting the standard O(#®) central difference approximation to wu, in
Equation (6) we obtain:

d 1 a’( ) c?
Uirlj =25 + Uy ;) = —

~

(“i+1,j = 2u; ; + ui—l,j)+ O (h4)

TR 12 d¢ B2 4
™)
Rewriting Equation (7) we get:
d 12¢2 4
d—t(u,-_l,j +10u; ; + Uiy j )= —h2 (u,-_l,j —2u; ; + u,._l,j)+ (0] (h ) 8
The semi-discretized version of the fourth order accurate Equation (8) is;
2
A%(t)=112; Bu,(t),i=0,1,....,N,t20 ©9)
' t
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where:

u; (1) = [t (©) 14y @) 5 ooy uy (B)] (10)

Equation (9), a set of first order ordinary difference equations is the semi-
discrete approximation which converges to u(x; f) at spatial grid points x; and A
and B are coefficient matrices.

3.0 HOMOGENEOUS BOUNDARY CONDITIONS

For a bar of length, L, with homogeneous boundary conditions u (0, £) = u (L, )
= () we get:

up ()=u(0,£)=0
uy (6) = u(L,1)=0

(11)
(12)

Substituting the boundary conditions (11) and (12) into Equation (9) we can
obtain the coefficient matrices, A and B, given as:

10 1 0 0 00 0
1 16 1 0 00 O
0 1 10 1 00 O
A= (13)
0 00 0 . 1101
| 00 0 O 0110
(-2 1 0 0 000 ]
1-2 1 0 0 0O
01 -2 1 0 00
B=| . . (14)
0 1 -2 1
0 0 0O 0 1 -2
Since det (4) # 0, A is invertible and Equation (9) can be written as
du, () 12¢*
—r = A7BU, (¢ 15
I P () (15)
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With initial condition:
ui (0) = g(x;) (16)

Any standard Runge-Kutta integrator can be applied to Equation (15) with the

initial conditions given by Equation (16). 4

The exact solution for Equation (1) subject to the boundary condition (2) with
the initial condition:

g(x) =sin (E) (17)
L
1S
u(x,t) = § Ansin (%} g (18)
n=I
where
2 . [ nmx cnA
An = z ng(X)Sln (T] ﬂ’n = T (19)
and
1, =T
"L

3.1 Numerical Results

For h =é, ¢=1,k=001and L =1, numerical results are obtained. Here

MATLAB is used to calculate the results. For time step £ = 0.01 the Euclidean
norm of the error obtained from MATLAB is shown in Table 1.

Table 1 Norm of the error vector for homogeneous boundary condition

) T Norm of error vector
0 0

1.000000000000000E-002
2.000000000000000E -002
3.000000000000000E -002
4.000000000000000E-002
5.000000000000000E-002
6.000000000000000E-002
7.000000000000000E-002
8.000000000000000E-002
9.000000000000000E-002
1.000000000000000E-001

4.902156805896193E-005
8.882942012123435E-005
1.207233886443459E-004
1.458397143930254E-004
1.651705518284252E-004
1.795831431373788E-004
1.898253186337675E-004
1.965583787824429E-004
2.003495283676112E-004
2.016931803852542E-004

3.2 Discussion

The high-order compact scheme presented here has an error of O(h* , k*). With h
selected as 1.6667 e —01 and k& given the value 0.01 the error should be
proportional to the order of the error in the scheme. The numerical results shown

21




Jurnal Mekanikal, Jun 2001

in Table 1 prove that the error is indeed proportional to h*  which is the
dominating quantity in the error term.

4.0 INSULATED BOUNDARY CONDITION

insulated

x=20 insulated x =1L

Figure 2 One-dimensional heat conduction, conducting and insulated boundaries

Next we consider the bar to be insulated at one end. Hence for Equation (1) the
boundary condition (2) becomes

ou(L,t) 4
x

u (0,1) =0, (20)

where a is a constant.

Implementing the Neumann Boundary condition presents no difficulty and is
done as in the homogeneous boundary conditions. To implement the boundary
condition (20) we need a 0(h*) accurate approximation to the first derivative
using backward difference scheme as follows:

o u—uy  h = ;

;i B h ; 4
=y —— u, + —u; +0(h 21
u p S (h") (21)

Where all derivatives are evaluated at x = L or i = N and from Equation (1)

W =ty =, 22)
C
" 1 1 d
then =u, =—u,=——(@) =0 23
v u XXX C2 x C2 dt ( ) ( )
; 1 1 0
and uV=u_ =—u, = (u,,) (24)

XXXX 02 txx C2 ot
An O(h) accurate approximation for «" (using backward difference scheme) is:

' =t = =)+ 008 25)
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Using Equations (23) and (25 — 28) in Equation (24) and rearranging the O(h?)
accurate approximation (24) becomes

d 12¢°
E( vt SuN)j = h*i(ui—l —U; +ah)j +0(h*) (26)

Equation (29) is applied at the boundary node x =L or i =N to yield:

d 12¢*
T (“N—l +Suy )j = h%i (uN—l Uy Tt ah)j (27)

Now in this case the semi-discretized Equation (9) can be written as:

d 12¢2
A—I/. )=
dt ) h?

[Bl,] +C] (28)

where the matrices A, B and C are defined as:

2 18~ 1 w@- 0 0 0 0
1 10 1 0 0 0 0
A= 0 1 10 1 0 0 0 (29)
00 00 1 10 1
R VR B o1 5 |
(—2100.000"
1-2 10 .. 00 0
B= 0 1-2 1 000 (30)
0 0 00 1-2 1
. 0 00 0 0 1-1 |
(o
0
and C= 0 (31)
0
| ah |
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Matrices A, B and C are obtained by substituting the boundary conditions in
Equation (28) and writing it for the N node points.

Equation (31) may be rewritten as,

12¢2

= (47 Bu, () + 47 C) (32

d
—u. () =
dtu’()

Equation (32) together with the initial condition (16) can be integrated by a
standard Runge-Kutta integrator.

The exact solution of Equation (1) subject to the boundary condition (23) with
a = 0 and the initial condition

.|
x,0)=g(x)=smn| — 33
u (x,0) =g (x) (2Lj (33)
is given by:
rc’t
; Ax TR
) = — - 34
u (x,t) s1n(2Lje (34)

4.1 Numerical Results

For a bar of length, L = 1, for totally insulated at one end, i.e, a = 0, h = 1/6,
k=0.01 and ¢ = 1, the numerical solution is obtained using MATLAB. For time
step k= 0.01 the Euclidean norm of the error between the numerical and the exact
solutions is shown in Table 2.

Table 2 Norm of the error vector for adiabatic boundary condition

T

Norm of error vector

0

1.000000000000000E-002
2.000000000000000E -002
3.000000000000000E -002
4,000000000000000E-002
5.000000000000000E-002
6.000000000000000E-002
7.000000000000000E-002
8.000000000000000E-002
9.000000000000000E-002
1.000000000000000E-001

0 :
8.838840899562461E-007
1.724684381933329E-006
2.523975924440418E-006
3.283282583385749E-006
4.004078601751526E-006
4.687790112110461E-006
5.335796607678521E-006
5.335796607678521E-006
5.335796607678521E-006
5.335796607678521E-006

4.2 Discussion ‘

As in the previous case of homogeneous boundary conditions, the error in the
case of adiabatic boundary conditions should also be proportional to O k%
implying that this is a fourth-order accurate scheme. The numerical computations
done by integrating in time with a fourth-order Runge-Kutta procedure using
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MATLAB and computing the Euclidean norm of the error vector using the exact
solution indeed prove the assumption that the error is proportional to fourth-
order. Since the increment in the space direction is much larger than the
increment in time, the error is dominated by A. This is shown in Table 2 where
the norm is presented at various times.

5.0 CONCLUSION

A fourth order accurate solution in space and time has been obtained for the one-
dimensional transient heat transfer equation subjected to homogeneous as well as
mixed boundary conditions. The numerical solution agrees extremely well with
the exact solution as shown by the magnitude of the norm of the absolute error
vector at various times. The error in case of the homogeneous boundary condition
as well as in the case of the mixed boundary conditions are proportional to the
fourth power of the increments in space and time

REFERENCES

1. Leonard, B. P., 1979, “4 Stable and Accurate Convective Modelling
Procedure Based on Quadratic Upstream Interpolation”, Computer Methods
in Applied Mechanics and Engineering, vol. 19, pp. 59-98.

2. Bradley, D., Missaghi, M., and Chin, S. B., 1988, “4 T aylor Series Approach
to Numerical Accuracy and a Third-Order Scheme Jor Strong Convective
Flows”, Computer Methods in Applied Mechanics and Engineering, vol. 69,
pp. 133-151.

3. Gupta Datta, A., Lake, L.W., Pope, G.A., and Sepehrnoori, K., 1991, “High
Resolution Monotonic Schemes for Reservoir Fluid Flow Simulation”, In Situ,
vol. 15, part 3, pp. 289-317.

4. Harten, A., Engquist, B., Osher, S., and Chakravarthy, S. R., 1987,
“Uniformly High Order Accurate Essentially Non-Oscillatory Schemes IT’,
Journal of Computational Physics, vol. 83, pp- 231-303.

5. Harten, A., Engquist, B., Osher, S., and Chakravarthy, S. R., 1987,
“Uniformly High Orfer Essentially Non-Oscillatory Schemes III”, Journal of
Computational Physics, vol. 83, part 2, pp. 231-303.

6. Jain, M. K., Jain, R. K., and Mohanty, R. K., 1992, “Fourth-Order Finite
Difference Methods for Three Dimensional Elliptic Equations with Non-
Linear First-Derivative Terms”, Numerical Methods for Partial Differential
Equations, vol. 8, part 6, pp. 575-591.

7. Lele, S. K., 1992, “Compact Finite Difference Schemes with Spectral-Like
Resolution”, Journal of Computational Physics, vol. 103, pp. 16-42.

8. Hirsh, R. S., 1975, “Higher Order Accurate Difference Solution of Fluid
Mechanics Problems by a Compact Differencing Technigque”, Journal of
Computational Physics, vol. 9, part 1, pp. 90-109.

25




Jurnal Mekanikal, Jun 2001

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

26

Gartland, E. C. Jr., 1982, “Discrete Weighted Mean Approximation of a
Model Convection-Diffusion Equation”, SIAM Journal on Scientific and
Statistical Computing, vol. 3, part 4, pp. 460-472.

Noye, B. J., 1990, “New Third-Order Finite-Difference Methods for
Transient One-Dimensional Adrection-Diffusion”, Communications in
Applied Numerical Methods, vol. 7, part 7, pp. 501-512.

Noye, B. J., 1991, “Compact Unconditionally Stable Finite Difference
Method  for Transient  One-Dimensional  Adrection-Diffusion”,
Communications in Applied Numerical Methods, vol. 7, part 7, pp. 501-512.
Abarbanel, S. and Kumar, A. 1988, “Compact Higher-Order Schemes for the
Euler Equations”, Journal of Scientific Computing, vol. 3, pp. 275-288.
Dukowitz, J. K. and Ramshaw, J. D., 1979, “Tensor Viscosity Method for
Convection in Numerical Fluid Dynamics”, Journal of Computational
Physics, vol. 32, pp. 71-79.

Wong, H. H. and Raithby, G. D., 1979, “Improved Finite Difference Methods
Based on a Critical Evaluation of the Approximate Errors”, Numerical Heat
Transfer, vol. 2, pp. 139-163.

Dennis, S. C. R. and Hudson, J. D.1989, “Compact h? Finite Difference
Approximations to Operators of Navier-Stokes Type”, Journal of
Computational Physics, vol. 85, pp. 390-416.

Dennis, S. C. R. and Wing, Q., 1986, “Generalized Finite Differences for
Operators of the Navier-Stokes Type”, In F. G. Zhuang and Y. L. Zhu, (eds.),
Proceedings of the 10" International Conference on Numerical Methods in
Fluid Dynamics, vol. 264, pp. 222-228, Springer-verlag.

Gupta, M. M., Manohar, R. P. and Stephenson, J. W., 1984, “4 Single Cell
High Order Scheme for the Convection-Diffusion Equation with Variable
Coefficients”, International Journal for Numerical Methods in Fluids, vol. 4,
pp- 641-651.

Wilson, R. V., Demuren, A. O. and Carpenter, M., 1998, “Higher-Order
Compact Schemes for Numerical Simulation of Incompressible Flows”,
ICASE Report No. 9813, NASA/CR-1998-206922.

Spotz, W. F., 1995, “High-Order Compact Finite Difference Schemes for
Computational Mechanics”, Ph.D. Dissertation, The University of Texas at
Austin.

Spotz, W. F. and Carey, G. F., 1993, “High-Order Compact Finite Difference
Methods with Applications to Viscous Flow”, Technical Report TICAM 94-
03, Texas Institute for Computational and Applied Mathematics.

MacKinnon, R. J. and Carey, G. F., 1988, “Analysis of Material Interface
Discontinuities and Superconvergent Fluxes in Finite Difference Theory”,
Journal of Computational Physics, vol. 75, part 1, pp. 151-167.

Kreyszig, E., 1999, “Advanced Engineering Mathematics”, John Wiley &
Sons, Singapore.



