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ABSTRACT

This paper describes a numerical model capable of predicting high speed homogeneous
condensation process of steam. The solution of the two-dimensional fluid dynamics equations
are based on the cell-vertex finite-volume time-marching method. The spatial integration is done
using central discretization and the temporal integration is done using the fourth order accurate,
4 stage Runge Kutta time integration. The governing equations are coupled with the nucleation
and droplet growth equations in order to describe the high-speed condensation process. The
predicted results are compared with published experimental data, which showed very good
agreements.

1.0 INTRODUCTION

Adiabatic expansion of steam from an initially superheated or saturated state will
eventually lead to the condensation of some of the vapour into liquid.
Condensation on foreign nuclei, dust particles, ions etc. present within the vapour
is termed heterogeneous nucleation. This is in contrast to homogeneous
nucleation where in the absence of such surfaces the path to condensation is by
the fortuitous formation of liquid droplets within the vapour. In order to grow,
droplets must attain a critical size, a condition that presents a barrier to
nucleation. For this reason nucleation rate is extremely small when the state path
first crosses the saturation line, causing it to become metastable (usually referred
to as supercooled or supersaturated), until a limiting condition is reached, at
which random kinetic motions of molecules create sufficient stable microclusters
for equilibrium to be recovered through condensation.

The measure of the departure of the fluid from equilibrium are
supersaturation ratio, S :

S= ) (1)
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and supercooling, AT, defined as :
AT =T,(P)-T, 2

In order to model the homogeneous condensation process accurately,
equations describing the nucleation process as well as heat and mass transfer
process during the growth of the droplets need to be coupled with the gas
dynamics equations. The first successful attempt at this was achieved by
Oswatitisch [1]. His laborious hand calculations for the pressure distributions
along the nozzle axis agreed with the experimental measurements in convergent-
divergent nozzles of Yellot [2] and Binnie and Wood [3]. Following Oswatitsch’s
success, other workers refined the theoretical treatment and used comparisons
with measurements in convergent-divergent nozzles to validate the proposed
refinements of the nucleation theory. Gyarmathy [4], Pouring [5], Barschdorff [6]
and Campbell and Bakhtar [7] are examples of this line of work. All of these
works were one-dimensional.

The first successful theoretical treatment of two-dimensional condensing flow
of steam was obtained by Bakhtar and Tochai [8]. Extensive modifications were
made in order to couple the Euler and two-phase flow equations, to allow for
nucleation and droplet growth. The treatment was applied to flows in convergent-
divergent nozzles and a cascade of fifty percent reaction turbine blades. Further
works on this were done by Bakhtar and his co-workers such as Alubaidy [9], So
[10], Abbas [11], Mahpeykar [12], Henson [13] and Zamri [14]. All, apart from
Zamri [14] used first order accurate finite-volume time-marching scheme based
on Denton [15]. In this paper, a numerical model utilizing second order accurate
finite-volume time-marching scheme, with fourth-order accurate Runge-Kutta
temporal integration capable of predicting homogeneous nucleation process is
described. The numerical model is applied to a few cases of condensing flow in
nozzles and compared with experimental data. It will be shown that the
comparisons show very good agreements.

2.0 CONDENSATION OF STEAM IN NOZZLES

The majority of engineering investigations into the effect of condensation on
flowing steam have been carried out using convergent-divergent nozzles because
of the simplicity of the essentially one-dimensional flow within them. They have
also proved useful in validating nucleation and droplet growth theories.

Nozzle experiments are performed under steady state conditions and the whole
history of the condensation process is conveniently displayed spatially along the
length of the nozzle.

A typical condensing flow of steam in a convergent-divergent nozzle is shown
schematically in Figure 1. The path of the expansion is shown on the Mollier
diagram in Figure 2. Steam expands from initially dry-superheated stagnation
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state (1) to sonic conditions at the throat (2). At point (3), the saturation line is
crossed and droplet embryos begin to form and grow in the vapour. The
nucleation rates associated with these early embryos are so low that the steam
continues to expand as a dry single-phase vapour in a metastable, supercooled or
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supersaturated state. Depending on the local conditions and rate of expansion,
nucleation rate increases dramatically and reaches its maximum at point (4),
where breakdown of supersaturation occurs. The region just upstream of point (4)
is termed the nucleation zone and is terminated by Wilson point (4), which is the
point of maximum supercooling. Downstream of this point, nucleation effectively
ceases and the number of droplets in the flow remains constant. The nuclei grow
rapidly between points (4) and (5) by exchanging heat and mass with the
surrounding vapour and restore the system to thermodynamic equilibrium. The
conduction of latent heat, which is released at the droplet surfaces, to the parent
vapour, gives rise to a gradual increase in pressure from point (4) to (5) known as
condensation shock and decelerates the already supersonic flow. The further
expansion of the flow between points (5) and (6) takes place close to equilibrium.

3.0 NUMERICAL FORMULATION

The governing equations employed are basically the Euler equations. The main
governing flow equations cast in the finite-volume formulation in x-y cartesian
coordinates system is : -

ow 3 B
Q=== g(ﬁdy Gdx) 3)
where
p pVx pVy
\'A V2+P PV, V,
w=l ol B=P2 T 5 el @
PV, pV.V, pV,” +P
pEO pVxHO pVyHO

where Q is the volume of the small element with perimeter S as shown in Figure
3. The small element shown is one of the finite volumes, which are formed by the
intersection of quasi-streamlines and quasi-orthogonal lines. The flow variables
are stored at the cell vertices.

The above equations are solved simultaneously for each finite cell volume
using a time marching method. In the time marching method, starting with the
initial guess of the flow variables distribution in the calculation domain, the
solutions are marched in time until the changes of the properties become
effectively independent of time. Then, the solution is assumed to be converged.
The main advantage of the time marching method is that the same algorithm can
be applied to all flow regimes regardless of whether they are subsonic, sonic or
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transonic since the mathematical characteristic of the unsteady Euler equation is
hyperbolic regardless of the flow regimes.

Fixed Area Q
Boundary S

B +

Figure 3 An Element of a Mesh

The spatial integration is done using central discretization which is of second
order accuracy. A blend of second and fourth order artificial dissipations with
pressure switch are added to the residuals prior to the time integration to remove
wiggles from the solution. The temporal integration is done using the fourth order
accurate, 4 stage Runge Kutta time integration. To speed up the convergence, 3
types of convergence acceleration schemes are employed namely, local time-
stepping, enthalpy damping and implicit residual averaging.

At inlet boundary, as required by the theory of characteristics, three variables
are fixed, namely, the total pressure, total temperature and flow angle, while the
static pressure is extrapolated from the interior. At exit, if the exit flow is
subsonic, only the static pressure is fixed, while total pressure, total temperature
and flow angle are extrapolated from the interior by first-order extrapolation. If
the exit flow is supersonic, all four variables are extrapolated from the interior. At
the solid boundary, normal fluxes are set to zero.

To apply the above conservation equations and solution procedures to the two
phase flows, the equations have to be combined with the equations describing the
droplet formation and growth and solved simultaneously. The equation for
describing the rate of nucleation of the droplet per unit volume is :

st

_ 1 20, Ps(TG)PG exp ~AG &)
((+v) Vom®  p, KT
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where

RT, 3 L
v=q2a | G[ T ] ©)
a, V 2n \ RT;" 2Tg
The equation for the rate of growth of the droplet is given by

%%[u_} o
toPLb 11507

The two sequences of calculations are carried out separately, but it is essential
that the coupling between them be exact. This is achieved by the
introduction of the wetness fraction, w, into the expression for mixture enthalpy
h and density p to yield :

h=(1-w)hg +wh (8)
and

Log-wtswl ©

P Pa PL

The wetness fraction in turn may be expressed as :

e Al s

Wz%‘nr'NpL (10)

where N is the number of droplet per unit mass of mixture. The total number of
droplets at the end of each calculation step is the sum of the number of droplets
existing in the flow at the beginning of the step, N, and the number formed by
nucleation over time increment dt i.e. :

N=N, +J 3t (11)

At the end of the calculation step the two populations of droplets i.e. the newly
formed ones and those existing in the flow are combined into one population and
the mean radius calculated on root mean square basis.

The additional information necessary is the equation describing the properties
of the liquid and vapor phases. The equation of state adopted for the vapor phase
is

=1+Bp, (12)
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where B is the second virial coefficient and thermodynamic properties of steam
are calculated from mutually consistent relationships. The above systems of
equations are sufficient to describe the flow completely.

4.0 APPLICATIONS TO CONDENSING FLOW OF STEAM IN
CONVERGENT DIVERGENT NOZZLES

In order to validate the model, the numerical scheme was applied to three cases of
nucleating steam flows in essentially one-dimensional nozzles. These nozzles are
those of Binnie and Wood [3], Krol [16] and Skilling [17]. The mesh
arrangements are shown in Figures 4, 5 and 6.

Figures 7a and 7b show the predicted and measured static pressure distribution
for a typical case of flow in the Binnie and Wood [3] nozzle. The agreement in
the static pressure distribution is very good. Both, the location and the strength of
the pressure rise have been predicted accurately. No droplet measurements were
performed on the Binnie and Wood nozzle. Comparisons shown in Figure 7b are
the results of a very accurate one-dimensional calculation. The comparison with
Krol’s [16] results are given in Figure 8. The static pressure distribution has been
predicted accurately. The predicted radius is in reasonably good agreement. For
both cases A and B, the maximum discrepancy in exit radius is only 10 %. The
last case considered is a stable flow condition in Skilling’s [17] nozzle and the
results are shown in Figure 9. Case B is the stable super-critical heat addition,
where an aerodynamic shock becomes embedded in the nucleation zone. For
both cases of sub-critical and super-critical heat addition, the agreement obtained
has been very good. It will be noted that the exit radius is larger for the super-
critical case.

5.0 CONCLUSION

A numerical model capable of predicting two-dimensional high-speed
homogeneous condensation of steam is described. The model employed second
order accurate finite-volume time-marching method together with the fourth-
order accurate Runge-Kutta temporal integration. The governing gas dynamics
equation, which is the Euler equation, are coupled with the equations describing
nucleation and droplet growth in order to obtain complete flow field descriptions.
The model are applied to a few cases of condensing flow in nozzles. The
comparisons between the predictions and experimental data show very good
agreements.
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Figure 4 Binnie’s and Wood’s [3] Nozzle — Mesh Arrangement
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Figure 6 Skilling’s [17] Nozzle — Mesh Arrangement
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NOMENCLATURE
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Second virial coefficient (m’/kg)
Specific internal energy (J/kg)

x component of the inviscid flux vector
Gibbs free energy (J)

y component of the inviscid flux vector
Specific enthalpy (J/kg)

Rate of formation of critical nuclei per volume per unit time (m™s™)
Boltzman’s constant (J/K)

Latent heat (J/kg)

Mean free path of vapor molecule (m)
Mass of droplet (kg)

Total number of droplet per unit mass
Static pressure (N/m?)

heat flux (J/kg/s)

Gas constant of vapor (J/kg/K)

Droplet radius (m)

Boundary of element

Temperature (K)

Time step (s)

Velocity vector (m/s)

Velocity component in x direction (m/s)
Velocity component in y direction (m/s)
Wetness fraction

Conserved variable vector

Axial distance (m)

Tangential distance (m)

Heat transfer coefficient (J/m/s)
Density (kg/m?)

Thermal conductivity (J/m/s)

Shear stress (N/m?)

Dynamic viscosity (kg/m/s)

Volume of element (m?)

Surface tension (N/m)
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Subscripts

< X @wnm o HA

10.

11

12,

13,

Vapor phase

Liquid phase
Stagnation condition
Droplet

Saturation

Cartesian co-ordinates
Cartesian co-ordinates
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