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ABSTRACT

This paper presents a new intelligent controller algorithm comprising
an on-line multi-layer artificial neural network (ANN) training
scheme to estimate the inertia matrix of the robot arm to enhance the
performance of the active force control (AFC) scheme. The robot
under study is a planar two-link rigid robot which is subjected to a
non-linear disturbance torques acting at the robot joints. The
algorithm has two stages, namely the ANN training stage and the
implementation stage. During the training stage, the proposed ANN
scheme trains the ANN parameters (weights and biases) for a period
of time by utilising the back-propagation (BP) learning method. After
a sufficient training period, the training session is switched off, and
the ANN is ready to be used in the implementation stage of the
intelligent AFC-ANN controller scheme. The results of the training

and implementation stages are shown and discussed. It is shown that
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the proposed controller scheme is very effective and robust. The

simulation is accomplished using MAT, LAB@soﬁ‘ware.

1.0 INTRODUCTION

Robotic control is an ever-growing research area. The main users of robotic
application are in areas of automotive and manufacturing industry, remote and
tele-operation manipulation and autonomous system. From all of the application
areas stated above, the first one holds the largest growth rate in using robot [1].
The main tasks involving industrial robots are spray painting, welding, material
handling and parts assembly operation. In the field of remote and tele-operation
manipulation, robots are used to manipulate objects in hostile environments (such
as those involving radioactive and corrosive working condition), underwater
(submersible) operation and in space exploration. In this type of application, the
robot is controlled by a human operator from a remote location. Autonomous
robots are used to perform unstructured tasks that require higher level of
intelligence and decision making control system. One typical application of
autonomous robot is unmanned vehicle for inter-planetary exploration.

Research on intelligent control system for robotic application related to
the position and force control, has been carried out for more than two decades.
The popular approach for solving the intelligent control system is by
implementing ANN to function as a controller itself, or as a part of a controller
system, and estimating the model or parameters, architectural design and weight.
However, very few papers have studied the combination of both to solve for
highly non-linear dynamical system problem such as robot force control.

In robot force control, the two most cited methods are the impedance
force control (IFC) as described in [2] and the hybrid position-force control

(HPFC) [3]. However, there is a number of drawbacks in the two schemes. The

® MATLAB is a trademark of The Math Works Inc
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performance of the IFC is dependant on how accurate the dynamic model of the
robot is achieved. In HPFC, the desired position and force have to be specified by
the user and need to be updated when the robot works with different environment
(different external force) or when the robot internal frictional force changes.
There is yet another robot force control method known as active force control
(AFC). _AFC operates mainly on measured and estimated parameters, which
would definitely lessen the computational burden. Some advantages of the AFC
strategy are that it has a fast decoupling property and it can be applied to variable
loading conditions. The performance of the AFC depends mainly on how
accurate the inertia matrix of the robot arm is estimated. The inertia matrix can be
estimated via crude approximation, look-up table,-iterative learning technique or

artificial neural network algorithm [4].

2.0 THE ROBOT MATHEMATICAL MODEL

The robot used in this work is a two-link rigid planar robot. The configuration of

the robot is shown in Figure 1.

Motor2

Motorl

Figure 1 The two-link rigid planar robot configuration

The principles of robot dynamics can be found in many literatures [3, 4
and 5]. The general equation of robot dynamic can be derived by using the
Newton-Euler or Lagrange-Euler method, and is described in the following

equation:
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T, = H(8)0+h(6,0) + G(6) + T, (1
where
T, is the vector of actuator torques
H() is N x N dimensional manipulator and actuator inertia matrix
h(O,é) is the vector of Coriolis and centrifugal torques
G(0) is the vector of gravitational torques

T, is the vector of external disturbances torques

The details of the mathematical model and the mechanical properties of
the two-link rigid robot used in this work can be found in [6] and [7]. The robot
is restricted to move in the horizontal plane, and is given a task to follow a
circular trajectory path with a specified radius. The robot is also subjected to an
external disturbance force (7) in the form of a sinusoidal function acting as a
non-linear type of disturbance. The sum-squared track error (SSE) is monitored

to study the performance of the proposed scheme.

3.0 THE ACTIVE FORCE CONTROL (AFC) STRATEGY

AFC is a control method first introduced by Hewit and Burdess [8]. This method

is derived from the Newton’s second law of motion for a rotating mass, i.e.

>T=lIo @

where
T is the sum of all torques acting on the body
I'is the mass moment of inertia of the rotating mass

o is the angular acceleration

For a robot system which has a serial configuration, the equation of motion

becomes
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T, + 0= I®)o | 3)
where
T, is the applied torque
Q is the disturbance torque
1(9) is the mass moment of inertia of the robot arm and is a function of
the

joint angle 6 .

o is the angular acceleration of the robot arm

The idea of the AFC approach is that, if the value of the disturbance
torques can be approximated with an acceptable accuracy, then it could be used to
decouple the actual disturbance torque (Q) from the applied torque. This will
make the system remains stable even under variable external forces. The

estimated disturbance torque can be obtained using the following relationship:
g=l'a-T (@)

where the superscript ( ° ) denotes a measured or estimated quantity. The applied
torque 7° can be physically measured using a torque sensor and o’ can be
measured using an accelerometer. Meanwhile, I’ can be obtained by several
means such as by the simple crude estimation or by just assuming a perfect
model. The more recent development has adopted the iterative learning technique
and ANN to estimate the value of I’ [6].

Figure 2 shows the schematic diagram of the AFC method applied to a
robot arm together with the resolved motion acceleration controller (RMAC), as
explained in [7]. There are two typeé of controllers employed, ie. the
proportional-derivative-RMAC (PD-RMAC) and the AFC. The PD-RMAC is
employed to calculate the reference acceleration command vector (), which

is required for the control signal ().
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Figure2 A block diagram of the active force controller applied to the robot
force control. The calculation involves the inverse kinematics
transformation of the robot arm.

This is fed into the AFC loop where the actual disturbance compensation
is taking place assuming that both the acceleration and the torque vectors are
suitably measured.

It is shown that the estimated disturbance torque (Q°) can be computed by
the following equation:

Q' =IN 644-T, (5)

and
T, =Knl 6)

where

044 is the acceleration signal

IN is the estimated inertia matrix

T, is the applied control torque

K, is the motor constant

I, is the controlled current.

Previous research [7] has incorporated an intelligent technique based on
ANN with off-line training, to estimate the inertia matrix (IN). It has been shown

that by incorporating the ANN, the inertia matrix can be effectively estimated.
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The result is very impressive compared to the other methods of estimation.
However, the ANN controller used in the system is trained off-line by using the
supervised learning method. The drawback of the off-line training is that the
accuracy of the network’s generalised solution is really dependent on the
accuracy of the training data. On the other hand, if the training is done on-line,
where the learning data is extracted from the actual running system, the result of

the network generalisation can be improved.

40 INTELLIGENT ROBOT CONTROLLER SCHEME INVOLVING
NEURAL NETWORK

There are numerous literatures on robotic control using ANN. Some of the works
can be found in [6, 9, 10 and 11]. Some implement the ANN as a controller itself
as in [10] and others incorporate the ANN as part of the controller system [9] and

[11]. Some of the works are explained briefly in the following sections.

4.1  Computed—torque with neural network control (Jung [10])

This scheme implements the computed-torque control approach. Two NN
controllers are employed to estimate the inertia matrix H(0) and the Coriolis,

centrifugal, gravitational and disturbance torques 12(9,9). The NN controllers are
trained off-line before it is being implemented in the on-line application. During
the on-line operation, the NN controller is updated to compensate for the
uncertainties in the robot dynamics. Figure 3 shows the block diagram of the NN

compued-torque controller scheme.

4.2 Adaptive NN control scheme (Pham and Oh [9])
Another adaptive NN control scheme is presented by Pham and Oh [9]. This

scheme is applied for controlling the articulated robot with # joints that carries
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Figure 3 Two NN controllers implemented in computed-torque control strategy
for on-line operation

variable load in a MIMO plant. The control. system comprises of three neural

networks, as depicted in Figure 4. The first neural network, ¥ (NN1), is to learn

the forward dynamics of the robot, in which, the input to the NNI1 is the torque

from the controller (u) and the output is the estimated position of the robot, o, .

The second NN, & (NN2), is to learn the inverse dynamics of the robot. The

input to the NN2 is the actual robot position, ¢, , and the output is the estimated

torque. The third NN & = is a copy of NN2 but is used to control the robot. The

first and second NN are trained on-line to give the system the ability to adapt to

any changes. In the diagram, o is a function of the desired position ¢,and ¢ is

the predicted total error.

The controller input to the robot is given by:

u, =d.+K,e )
where

&, is the output of iy
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K; is the feedback controller gain

e is the actual position error

The value of ¢ is obtained as follows:

Sk+1) = Kye(k)+ Ko og (k+ D - ok +1) ] ®)

where K; and K are suitable constants.
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Figure 4 The adaptive NN controller scheme for robot force control

Another interesting feature of this scheme is that it employs the modified
Jordan network (MIN). The MIN consists of a recursive network with an
additional state layer. The purpose of the state layer is to allow the network to be

trained to represent arbitrary dynamic systems.
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50 THE PROPOSED ON-LINE INTELLIGENT AFC-ANN
CONROLLER SCHEME

The proposed on-line intelligent AFC-ANN scheme involves two stages, namely
the on-line training stage and the implementation stage. The schematic diagram
of the ANN set-up is shown in Figure 5. The dashed line indicates the on-line
training scheme, which is activated during training stage only. During this stage,
the value of ANN parameters, i.e. weights and biases, are adjusted to reduce the
position error of the robot arm. When training is sufficient, the on-line training
scheme will be deactivated, and the feed-forward network (FFN) is ready for the
implementation stage. The ANN is trained using BP algorithm. It should be noted
that the error signal for the training network is not obtained directly from the FFN
output, but rather from the actual positional error of the robot arm. By this way,

the network can be trained using actual error to be controlled.

Rk Feed- Estimated to
moter ———fp| Forward | N e b B A
parameter Network — Controller 0DY
Inputs I
; i (FFN)
]
i
i ]
1 1
i R N
Robot == "’E Training !
Parameter 1 Network !
Error -P: i
Inputs R

Figure 5 Schematic diagram of the neural network set-up with feed-forward
network and training network

5.1 The neural network structure

The structure of the neural network implemented is the multi-layer feed-forward
network with single hidden layer and five hidden nodes. The input parameters for
the FFN are the angular position of joint 1 and joint 2. The transfer function for
all the hidden nodes is log-sigmoid, and for the output nodes positive-linear. The

network structure configuration is shown in Figure 6.
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Figure 6 The structure of the multi-layer feed-forward network

Figure 7 shows the complete schematic diagram of the AFC-ANN
intelligent controller scheme. An external non-linear disturbance torque (or force)
(Q) is introduced to the robot arm end-effector. This is to study the effectiveness
of the AFC-ANN controller scheme. The thick line shown in the figure indicates
the implementation of the proposed on-line ANN sub-system to estimate the /N
of the robot arm for the AFC loop.

RMAC Controller

Coordinate
transformation Lt
X, :
: Coordinate
transformation
H Coordinate <
[ transformation
ANN

Figure 7 The schematic diagram of the on-line AFC-ANN controller for robot
force control
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6.0 SIMULATION AND RESULTS

The simulation is carried out using MATLAB software. In the simulation, the
robot is commanded to move in a specified trajectory. In the study, the reference
trajectory is a circular path with a specified diameter. A continuous non-linear
disturbance with specified lower and upper limits is introduced at both the robot
joints. In order to ensure that the network always estimate the inertia matrix
values within the acceptable range, a lower and upper boundary limits of the
network output are set. The learning rate and the momentum rate for the BP

method are 0.1 and 0.05 respectively.

6.1 The result of the on-line training stage (Stage 1)

The training session is run for 20 seconds to allow sufficient time for the network
to learn. Figui'e 8 shows result of the tracking error at this stage. As shown in the
figure, during the first three seconds of the training period i.e., the first complete
circle of the trajectory path, the tracking error is changing very fast. The highest
tracking error is 3.3 x 10 m at time t = 2 seconds. This shows that the estimation

of the inertia matrix by the network is not good enough.
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-
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Time (seconds)

Figure 8 The tracking error result during on-line training stage
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However, as time increases, the network keeps on learning until the sum-
squared tracking error falls to approximately 2.3 x 10~ m. This demonstrates that
after 20 seconds of training, the estimation of inertia matrix by the network is
better. The estimated inertia matrix for both robot arms during the on-line

training stage is shown in Figure 9.

% 10'3 Change of robot inertia for arm 1 and 2 during on-line training
0

|
—— Inertia forarm 1
______ — - Inertiaforarm2 |

Inertia of the Robot Arm

Time (seconds)

Figure 9 The estimated inertia matrix during on-line training stage

6.2 The result of the an-line implementation stage (Stage 2)
In this stage, the trained network parameters obtained from the on-line training
stage is used for the feed-forward network. The simulation is run for five seconds
to study the effectiveness of the method. The result of the tracking error is shown
in Fig. 10.

As predicted, the result shows a significant improvement compared to the
untrained network in Fig. 9. At time t = 2 seconds, the maximum tracking error is

0.6 x'10° m compared to 3.3 x 10~ m considering similar time duration in the

training stage.
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X 10'3 Positional Tracking Error during implementation Stage
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Figure 10 The tracking etror result during on-line implementation stage

7.0  DISCUSSION AND CONCLUSION

From the simulation, it is observed that the proposed scheme can learn and react
to the external non-linear disturbance torque acting at the roboi arms, as long as
the disturbance torque does not exceed the limit of the network learning
capability and the motors torque themselves. The network learning capability is
dependent on the number of hidden nodes and the learning and momentum rate,
since more non-linear disturbance torque needs more nodes and different learning
and momentum rates in order to obtain a good inertia estimation values.

This work shows the AFC-ANN with the on-line training scheme is
‘capable in controlling the robot arm even under unknown non-linear disturbance
torque. Since the training is done on-line, this scheme can be applied to any types
of robot configuration.

Since the network structure in this simulation is designed by ‘trial and
error’ method, the chosen network may not be the optimum network design for
that particular problem. Thus, it is a challenge to develop an algorithm, which can

search for the optimum network design. For future work, other method should be
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incorporated to the AFC-ANN scheme to solve this problem. One of the

possibilities is to incorporate the evolutionary computation method to evolve the

network until the optimum network is obtained.

In conclusion, this work shows that the proposed on-line AFC-ANN

scheme is capable of becoming a robust intelligent robot controller method.
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