Jurnal Mekanikal, [ilid I, 1996

SHARED-TRANSITION PETRI-NET BASED
SIMULATION FOR IMPLEMENTATION IN A
UNIVERSAL MACHINE CONTROL ENVIRONMENT

Saparudin Ariffin
R.H. Weston
and
R. Harrison
MSI Research Institute,
Department of Manufacturing Engineering
Loughborough University of Technology

ABSTRACT

This paper presents a .;;1c)d1¢lar Petri-net (MPN) based approach to
modelling and analysing machine control processes. Here production lines
which are characterised by a set of modules (or machiné objects) can be
controlled by a MPN. Interaction between different modules and
workpieces is encoded within the Petri-net by so called shared-transition
links. The paper describes the integration and implementation of modular
Petri-net within a Universal Machine control (UMC) software environment
which has previously been devised and produced within the MSI Research
Institute at Loughborough University. Potentially the combined used of
Petri-net and UMC offers new and exciting opportunities to optimize the
behaviour of concurrent systems and to enable application in industrial

machine control.

1.0 INTRODUCTION

In contemporary manufacturing enterprises, computer systems have numerous uses
which include machine control. Common resource elements used within a
manufacturing enterprises, which include various production machines, robots and
transport devices. These elements need to be controlled in a flexible way (whether by
people or computers) thereby promoting their reusability. Typically workpieces are

20

—

Jurnal Mekanikal, Jilid I, 1996

required 10 flow between resource elements so that appropriate product realisation

processes can be carried out. When employing a computer to control a machine system
capabilities for processing a family of workpieces can be included, this potentially
making such resources re-usable building blocks of a flexible manufacturing enterprise.
Hence increasingly commonly multiple jobs share a set of reusable resources. However
in such systems (as with other physical systems involving concurrency and the need for
synchronism), problems of conflict and deadlock can occurred. to help overcome such
problems Petri-net specification techniques can be employed to schedule workflows; as
Petri-nets have the ability to represent concurrency and conflicts among tasks. Petri-nets
are effectively formal, graphical modelling tool capable of describing concurrent and
distributed systems (Yim and Barta 1994) and as such are finding use in the design of
computer software and hardware, communication systems and manufacturing systems.
However, use of the basic Petri-net formalism can result in major constraints when
handling large complex systems. As the number of Petri-net objects is increased,
modelled systems become unmanageably complex making them very difficult for
humans to interpret and manipulate; thus under such circumstances it extremely difficult

to make modifications if the solutions defined need to be chanqu or extended.

20 A TASK LEVEL SIMULATION MODEL

The goal of the first author's research study is to produce a design concurrent for machine
control based on the use of selected software architectures and formal specification
techniques; and to implement the designs so derived by using the Universal Machine
Control (UMC) software environment. A functional type of software architecture was
selected and analysed as described by Ariffin et al (1994). The main advantages are the
combined used of a functional architecture and the UMC program development.and
implementation environment include: the reusability of existing code and functions;
support of a modular programming method; easier extension of existing programs; and
the flexibility and extendibility of the approach to support various application domains.
In such a schema, the basic motion planning and monitoring algorithms used to
control workflows through resources need to be modelled to facilitate design supported
by simulation and visualisation of candidate solution. For example, such models should
characterise the behaviour of machines used (e.g. classy attributes and parameters and the

workflows involved, e.g. states, velocity and acceleration).

21

Jurnal Mekanikal, Jilid I, 1996

If good models of the system can be obtained it then becomes possible to use
computer simulation to establishing and optimize the control logic of a machine system.
Figure 1 illustrates typical procedural steps involved in engineering a machine system
using the authors approach. When the basic control logic is determined, analysis and

description of a particular operating sequence for a machine system can commence.

Implement
the rl_tlz_a] time
machine
Derived a zgitutgf system
behavioural program by
Detailed model emulation
simulation describing the
Initial and analyse control logic Create a
simulation of the m&chul:e
and analysis control Use of ., contro
of the " logic Universal system and
machine Specification Machine seek to
of task level Control optimize its

s .
ystem Use of the control and software to operation

functional ~ Programming configure

. architect including a machine
Planninga . 4"“M® gatafiles system
lltleOUt an specification
1ts contro technique
logic

Figure 1 : Procedural Steps Involved in Designing and Implementing

Task Level Control of Machine Systems

3.0 SIMULATION OF HIERARCHICAL SYSTEMS USING PETRI-NETS
REPRESENTATIONS

The ability to represent the decomposition of a design in hierarchical form is a basic
requirement for a system designers (Dotan 1991). Hierarchical representation can
naturally support a top down design methodology. Various hierarchical manufacturing

control architecture concepts were developed by Albus et al (1989) and Johnson' (1990).

22

Jurnal Mekanikal, Jilid I, 1996

passes information to another parallel process. Thus the need for inter process
communication and synchronization mechanism.

When a model in constructed it should have an inherent ability to characterise the
behaviour of a system under variety of operating conditions (Wiendahl et 1991). Based
on a stochastic Petri-net modelling approach it is possible to examine and optimize real
processes and the behaviour of real systems (Zhou et al 1990). In such an approach a
model describes time dependent processes and interactions within the real system. By
analysing the timing relationships using a Petri-net specification technique, each task can
be optimized by choosing the most appropriate physical components and at the same time

avoiding deadlocks between processes.

Petri-net models can thus function as virtual hardware and as such can be used to
simulate how the system will actually behave (Krogh and Genter 1990). These models
can be utilized in design and operating phases of machine control systems. Especially for
design, a full description of the states, events, time delays and activities of hardware
components can be provided with Petri-net objects that are transparent tq, practical users.
In the operating phase, the Petri-net model can be used as an emulator. Al this stage, the
current state of a system can be mapped to the Petri-net model by appropriate assignment

of initial tokens.

A software tool can be developed to support the specification technique of Petri-
nets. The output from such a tool can display and verify the correctness of connection
between places and transitions, and the time-stamp of each place. The movement of
tokens and firing sequences can be displayed to simulate and visualise conditions that
will occur in a machine environment. Here control logic is required to drive the
concurrent operation of Petri-nets, including the synchronization protocols required for

Petri-nets using distributed processes.

Once a model of machine system has been created it may run as a simulation.
Task behaviour is emulated by the generation of events for every node of the model. A
node represents for example an assembly or buffer station and is described by a list of its
properties including a time stamp. An event is properties including a time stamp. An
event is simply a statement that information or control is transferred for processing at
some other node at a specified time delay. To be closer to the way that process dynamics
occur in real systems, it should be possible for several events to occur in real systems, it

Jurnal Mekanikal, Jilid I, 1996

should be possible for several events to occur in parallel. In other word, several
transitions should be allowed to fire simultaneously if they do not share resources.
Furthermore, an event-generated task is normally repeated until a predefined stop criteria
has been reached. Under such conditions a Petri-net simulation should faithfully follow
the behaviour of the described system, this being characterized by transition's firing and
the movement of tokens in the places. When all input places with tokens are searched
and found, the relevant transition can be enabled and instantiated and firing of the
transition can start. The flow of events occurring in a concurrent system is similar to the
computation process which take place when the execution of fired transitions occurs in a
simulation program. An event (transition) is enabled (fired) when all the preconditions

(tokens in input places) are fulfilled.

The Petri-nets simulation model is separated into hardware and control systems.
This is to achieve a closed similarity between a simulation model and a real system. In
other words, the modelling process becomes more realistic and is more easily
accomplished. In this way, the implementation of control logic is easily performed by
simply converting the control logic in the simulation model. While simulation allows a
designer to verify the system performance for a specific system, algorithmic-based
analysis of Petri-net models has the potential for verifying the completeness and
consistency of a design with respect to all possible real systems (Krogh and Genter
1990). .

Using the methods developed by the authors, the simulation program is then
incorporated into UMC environment. The program is first complied in a UNIX
environment which is then forked by the UMC configuration editors. After setup and
instantiation of the task program, the execution result is displayed in a UMC task
window. The UMC configurations support the handling of multi-tasking and inter
process communications (/PC). There are three type of IPC in UMC; these include:
events; signal; and user data modules. All these IPC methods are based on use of the
OS-9 operating system. The approach to compilation and execution is illustrated in Fig.
2. The OS-9 configuration editors, UMC task window and UNIX text editors exists in

the same computer environment.

25

Jurnal Mekanikal, Jilid I, 1996
50 MODULAR AND SHARED-TRANSITION PETRI-NETS
5.1 The Concept of Shared-Transition Petri-nets

The concept of Modular Petri-nets (MPN) was proposed by Ariffin and et al (1995) and
analysed. Such nets exhibits properties of liveliness within a confined module. the most
important criteria is to have a manageable and easily extendible Petri-net system which
functions as a virtual hardware analogue of real systems. In the proposed MPN,
flexibility when modelling can be achieved by defining a new Petri-net module to
represent any addition or modification of hardware components. The communication

between Petri-net modules is accomplished by creating shared-transitions. In a real

Source code in C using ANSI C x compiler

Real-time
execution

0S-9
Configuration
System

SUN UNIX-base workstation

Figure 2 : The Hardware and Software Environments

system, this takes the form of a communication path or connecting link between physical

resources or hardware components.

26

}umal Mekanikal, Jilid I, 1996

A piece equipment or group of equipment items can be considered as one task or
module. The Petri-net graph within the task is represented as a network of
communicating processes. Intertask communication between at least two resources must
exist in order to carry out the necessary job. This fact can be explained clearly by
examining a simple machine system layout as shown in Fig. 4. The machine cell consist
of a robot, an input conveyor and a processing machine. The robot unloads them on the
machine. This operation can be represented by the modular and shared-transition type of
Petri-net as shown in Fig. 5. All single-transitions connected to a shared-transition must
be enabled for firing before the shared-transition could then be enabled. A transition
concerns a dynamic properties of the system and represents a state change to some other
state. a shared-transition (ST) represents communication of certain state conditions
between at least two hardware components, such as when a job or part is transferred from
one machine to another machine. For example, as seen from Fig. 5, ST/ represents a part
being transferred (picked-up) from the input conveyor by the robot manipulator and S72
represents the part being place down into the machine. In order for a transition to fire,
each of the incoming places must be marked by tokens: a necessary condition for a
transition to be enables. the tokens represented by dots show the flow of .f)bjects in
machine systems. Each token belongs to certain object type such as a-part, pallet or
machine. After firing, the tokens are transferred to their respective outgoing places.

52 Time Extension

Having implemented the modular Petri-net schema for each task, an attribute of time is
assigned to tokens, which will determine the delay in the token's flow. Each token
carries a time attribute that is stamped at the moment of token's creation or at each instant
of transition firing. A single-transition delay always updates the time attribute thereby
maintaining latest time-stamp on corresponding incoming tokens. The time delay for a
shared-transition is based on the maximum time-delay of all relevant incoming single-
transitions (7). The model implemented in this shared-transition net is modular, which
means any change in one part of the net cycle does not affect the rest of it. This
approach also supports better understanding of the real mechanisms in a system via a

distinct execution of part of the net cycle.

27

Jurnal Mekanikal, Jilid I, 1996

Input conveyor machine

NN\
N
DN

Robot :E

Fig. 3 A Simple Robotic Cell Layout

P32 i
part on conveyor Robot available processing

T32 P33

T33

srrrrrrraan

T11

presssrss s
s rssrs s nrrn s ar

P S T T T T T

PPy

conveyor free as part e idle
INPUT CONVEYOR ROBOT MACHINE
P - Place, T - Transition, ST - Shared-Transition

Fig. 4 A Shared-Transition and Modular Petri-net Model

28

!

i}umaf Mekanikal, Jilid I, 1996

5.3 Shared-Transition Algorithm and Programming Method

f?l‘he shared-transition algorithm is selected so that it is easy to accommodate any change,
‘especially with respect to data file and software development. In this study the building
of data structures in a source code file is considered to be important. Figure 4 illustrates
how the formation of a datafile can be used as input into a source code file, which

following execution or simulation of this source code can result in an output file or

record.

The programming algorithm starts by forming an input datafile (to read from) and
an output file (to write). In then builds a read function by inputting all Petri-nets
parameters used to model a machine system. The simulation starts by checking the status
of all single transitions (T) whether they are enabled or not. In order for a transition to
be enabled, all input places must be marked 'ON'. This is followed by checking if the
shared transitions (ST) are enabled. This is done by establishing that all attributes of
transitions are enabled in the first place. As soon as the ST's and T's are enabled, firing
statements for the transitions are displayed, followed by unmarking of the marked places
and marking the next places to indicate token movement. The status of ST's and T's must
also be put into the 'OFF condition. However, before a firing statement is displayed, the
current time stamp at relevant place's must be calculated. The output time stamp from a
fired ST or T must be carried over to subsequent transitions before firing can commence.
There is a need for an execution display after firing, this being important to confirm the
correctness of the status at the marked places and whether transitions are enabled. This

display should include current time stamps and be increased after each cycle.

6.0 ANALYSIS OF THE SHARED-TRANSITION MODEL
6.1 Types of Analysis

There are two main types of analysis carried out during Petri-net simulation, viz: (i)
verification of the model correctness and (ii) performance evaluation, using times Petri-
nets. The nature of the simulation enables the user to interact with the real time system
during the simulation. the power of this concurrent modelling technique lies in its ability
to detect deadlock conditions, conflicts and the boundedness of Petri-nets. Deadlocks

occur when no transition can fire, resulting in the simulation being suspended.

29

Jurnal Mekanikal, Jilid 1, 1996

Correctness of communication protocols can be established by observing execution of the

simulation. Jobs or parts are normally sequenced through a series of workstations on a

production line. Parts are transferred from one station to the next via independently

controlled transfer devices, such as robot and conveyors.

INPUT DATAFILE
rNo. of Tasks, No. of Places and Transitions in each task

Data input for TASK I:

Transition delay

No. of input places and their Transition No.

No. of output places and their Transition No.

No. of tokens, their Place No. and initial Time Stamp

No. of utilized transition and their Task No. and Transition No.

| Data input for TASK 2
[Data input for TASK 3

Declaration for Shared-Transitions, their attributes with
Task No. and Transition No.

1 SOURCE CODE FILE {}

OUTPUT FILE

All datafile input for each TASK

Display all static parameters to confirm correctness for each TASK
Display all static and dynamic parameters before firing

Statements for firing, Machine utilization, Current Simulation Time and
Current No. of parts completed for each sequence

Display all static and dynamic parameters after firing for each sequence

Display Final Simulation Output including Total Simulation Time, No. of
parts completed and Tabulation for Machine Utilization

Fig. 5 Data Structure and Programming Procedure

30

Jurnal Mekanikal, Jilid 1, 1996

The structure of shared-transition Petri-nets, their expressiveness and their
manner of processing, enables the implementation of a modular knowledge base of rules
and the development of simulation tools for manufacturing systems can also be
represented as a set of hierarchically organised subnets, where each subnets can be
isolated and analysed independently. This capability offers flexibility in the sense that
systems can be expanded independently and changes made to segments to the design

hierarchy.

6.2 Execution of the Shared-Transition Model

Contributing input to each shared-transition will be single transitions shared by at least
two tasks. The transition delay for these single transitions should be scheduled in the
normal way. However the transition delay for a shared-transition (ST) will be the
maximum value among the contributing single transitions. The sequence of for each
contributing single transition to be enabled will also be scheduled in the normal way. An
ST will only be enabled when all the incoming T are enabled. then all the time stamps
for output places from this ST will be the addition of its transition delay (which is the
maximum value among the contributing single transitions) with the maximum time
stamp among all the input places to the contributing single transitions. furthermore the
current time stamp attached to the output of an ST should be compared with the current
time stamp of each single transition (7). The maximum time value of the two will
become the current total simulation time for the modelled system. Hence, for example
the number of parts completed could be calculated when the Petri-net schema has
included the total flow of tokens from start to finish. During a certain simulation period,
the utilization of each machine can also be analysed, by knowing the total transition

delays related to each task.

Currently the modular Petri-nets simulation capability produced by the first
author is written in the ¢ programming language an executes sequentially. Using this
capability the concurrent movement of tokens in each task can be examined clearly.
However, further advantage would be enabled if the simulation programs developed
could be executed concurrently and in real time. Current work is therefore considering

the potential use of a multiprocessor execution environment, potentially with multi-

31

Jurnal Mekanikal, [ilid I, 1996

processor systems. However, the current UMC configuration editors do not support

multiprocessor execution of tasks.

7.0 RESOURCE-SHARING MECHANISM
7.1 Current Resource Sharing Mechanism Adopted

A manufacturing machine system often contains machine systems which share resources
(Zhou et al 1990). For example, in a production line, two machines may share a
common robot for loading and unloading. When a system contains shared resources,
inappropriate allocation of these resources may result in a system deadlock. Particularly
when a system contains a sequentially shared resource, it may become blocked when too
many parts are input during a specific time interval. In other words, the system
behaviour may depend not only on its organisational structure but also on its initial
status, i.e., initial token distribution in its Petri-nets equivalent model. Synchronization
functions need to deal with potential conflicts (the case where several processes which
share resources are enabled) by taking care that only one transition can occur out of those
that wish to share a resource (Dotan 1991). to be closer to the actual way in which
process dynamics occurs, it is assumed that several events that arise in machines systems
can occur and execute in parallel, this implying that several transitions can be fired
simultaneously as long as they do not share resources. Yim and Barta (1994) explained
that the concept of an inhibitor arc could play a role in preventing the firing of any
transition to prevent the transition from firing when the connected place has tokens. In a
case where a number of transitions having share a resource, only one resource sharing
transition should be enabled at a time to avoid conflict. Any transition firing could be

based on the priority or sequence of the modelled system.

The approach used by Dotan (1991) for the modelling of resource-sharing
machine systems is to first activate the transition having the shortest firing delay time.
Furthermore, several transitions can be fired simultaneously of they are not in conflict
and if they have the same firing time. If several enabled transitions share resources and
have the same firing time, the one which requires the least number of resources will be
fired. An enabled transition can move to either a fired state or disabled state. It will
move to a fired state if it is not in conflict with another transition (i.e. they do not share

resources). An enabled transition will move to a disabled state if there is another enabled

32

ol

Jurnal Mekanikal, Jilid 1, 1996

transition sharing resources with it, but having the shorter firing time. After the enabling
of all transitions has been checked in parallel, a clock is initiated and the transitions
compete for firing. The transition with the shortest firing time will stop the clock upon
being fired, disabling the rest of the enabled transitions. This approach seems exhibit
excellent properties with respect to avoiding any conflict and deadlock. However,
problems can occur in respect to job queues, especially where resource-sharing machines
have to handle multiple types of jobs at the input and output of the complete modelled
system. The sequence of flows for different types of token (parts) must be examined
clearly. This sequence has to be scheduled and be incorporated correctly in a datafile
before it can be executed. It is good to incorporate a minimum time for firing, this to

enable a minimum time in real processes without any conflict and deadlock.

The flow of events in a real system is similar to that found in the computational
processes which execute when running the simulation program. an event (transition) is
enabled when the set of precondition (marked input places with token) is fulfilled. A
schedule related to routing sequence determines the order of a.queue when an event
should be enabled. a sét of sequence numbers will only allow one shared place transition
to be enabled, this is to avoid any contradicting messages from other events sharing
resources with it. A means of allowing a random choice of resource-sharing transitions
that to be enabled could be adopted in an effort to enable only one transition to be fired a
time. However the sequence number generated in a random way may not correspond to
machine sequence which can be operated without deadlock. After an event is fired, the
tokens of each associated precondition and post conditions should be increased by 1 or

decreased by 1 respectively.

7.2 Programming Procedure Adopted for Resource Sharing

The programming procedure devised to handle the problem of resource sharing is as

follows:

. Open two files for inputting data and record all execution results. The input data
for task no., places no. and transition no., which describe the Petri-net schema in
each task of machine systems are displayed, including their attributes. For
example, the attributes for a transition includes a time delay, whether it become

an attribute to a shared-transition or not (i.e. shared status), and whether it can be

33

Jurnal Mekanikal, Jilid I, 1996

considered to calculate a machine utilization or not (i.e. utilize status. In the case
of places their attribute includes time stamp, whether it is a shared resource or
not, and marked tokens to indicate object movement. All these data can generally
be considered to be static data. A dynamic data such as an enabled status for a

transition and a marked token in a relevant place is displayed as a 1.

2. Prepare a read input file for transferring data into a source code file, which needs

to be modular in structure in order to easily make changes.

3 Prepare a function for a Petri-net simulation with looping. Firstly before looping,
execution all input data in an output display. This is important to check and
confirm that all input data are correct. Within the loop, the following

programming procedures are carried out.

(a) All single transition are checked to see if all their input places are marked
and indicate their status as 'ON'. Then check whether all resource sharing
transitions are enabled and their sequence statements for firing are
scheduled. -

(b) All shared transitions are checked to see if al their attributed single

transitions are enabled or not, if enabled then return status as 'ON".

(c) Display static and dynamic data before firing. The dynamic data should
include the enable status for transitions, the marked status and time stamp

for all places.

(d) Calculate the sum of the utilized transition delay in each task and if the
relevant transitions are enabled. This is done to facilitate calculation of
the machine utilization.

(e) Prepare a function for firing a shared transitions (S7) for firing. In this
function, firstly determine the longest delay among attribute shared
transitions (incoming single transitions). Secondly, generate a new time
stamp on the outgoing tokens according to the largest time stamp on the
incoming tokens. Thirdly, display the firing statement for ST with its
value of transition delay. finally, disable all ST attributes and unmarked

34

Jurnal Mekanikal, Jilid I, 1996

(H

(g)

(h)

(i)

@)

all tokens at the input places. then mark the outgoing places to indicate

objects movement and also disable the ST.

Prepare a function for firing of single transition (7). All procedures are
similar to the ST explained above, except a single transition use a

determined transition delay earlier in the input data.

Find the maximum current time stamp by comparing the ST output and T
output. this is to record the current total simulation time of any current

sequence.

Analyse the utilization of each machine or task by dividing the current

total transition delay by the current simulation time.

Calculate the no. of parts completed by observing the presence of a token
at the output place. This output place is an indication to determine the
process of a job or part is completed. this is done by observing the total

token flow from start to finish. %

Display the execution after firing.

4. Display the simulation output, indicating the total simulation time, no. of parts

completed and list machine utilization values.

7.3 Simulation Algorithm and Programming : Example Use in a
Machine Cell

The simulation algorithm used a handle conflict is either : identifies all the resource

sharing places and their related transitions then fires only one transition at a time; or by

checking for each task, identifying the number of resource sharing places fires only one

transition connected to each resource sharing place. To illustrate this phenomena refer to

Fig. 6. The resource sharing machine system is represented by the Petri-net analysed and

shown in Fig. 7. Here the machine system is divided into five tasks. There are four

places at which that are to be shared resources, namely P11, P21, P44 and P54. For

example the shared place P11 shares two transitions, i.e. T11 and T12. However only

35

Jurnal Mekanikal, Jilid I, 1996

one of these two transition will be enabled at a time and all transitions related to a
particular resource-sharing will be scheduled in sequence. As seen from Fig. 7, the order
of firing of the resource sharing transitions (i.e. ST1, ST2, ST4 and ST7) connected with
the resource sharing place P21, must be determined prior to running the simulation. Here
the aim will be to achieve the highest utilization of a machine. Figure 7 shows that
Machine A and Machine B are accessed by the robot on an alternating basis in order to
complete more parts in a given processing time. Figure 8(a) shows sample output from
the simulation where Machine A and B utilisation data is obtained from an analysis

carried out for the machine cell.

Machine A
Input conveyor Robot Output conveyor
N N x N g Q Q| § ~ §
NN N NN \l\l§l§l\
VRN NN NNK
- Machine B

Fig. 6 A Shared Resource Machine Cell Layout

Machine A

Input conveyor

sRTaAmAsASSLIILTASLASSEILLEY

Fig. 7 Modular Petri-net Model of the Machine Cell

36

Jurnal Mekanikal, Jilid I, 1996

<< SIMULATION OUTPUT >> << SIMULATION OUTPUT >>

i i ime = 38. Total simulation time = 58.0
ﬁ%ﬁ? gnarutlsagg;lglrg&d =3 2 ¥ No. of parts completed = 2
TASK M/CTME % UTILIZE TASK M/CTME % UTILIZE

1 2 345
% %8 ?boéoo 2 48 82.76
3 3 7.89 3 3 5.17
4] 13.16 4 10 17.24
5 5 13.16
(a) (b)

Fig. 8 Simulation Outputs (a) with Machine A and
Machine B (b) with Machine A Only

-

Further analysis'can be carried out to see what happens if the machine cell in Fig.
6 is operated without Machine B. Here the simulation output (as‘ shown in Fig. 8(b)
indicates that, in order to complete two parts the total simulation time is higher (being 58
as compared to 38 under previous conditions), the robot is less utilized and Machine A

has to work double time.

8.0 INTERPROCESS COMMUNICATIONS USING UMC

In a multi-tasking applications, processes must work together to perform overall job
functions. This requires the passing of data and synchronization between the processes.
A process (or task) has the job of forking the other process such as by using message
Passing mechanisms, which make up the application, and may themselves fork another
task (Tsujino et al 1984). For example, it may be important that one process must not
continue its job until another process must not continue its job until another process has
collected data it requires. The use of such message passing mechanisms should be
harmonized with that of the programming language used, in this case the 'C'
Programming language. the functions of synchronization and data transfer are known as
inter—process communication (/PC). Correct use of these functions is essential to the

Operation of a multi-tasking application. 0S-9 (Dayan 1993) has several different inter-

37

Jurnal Mekanikal, Jilid I, 1996

process communication methods available for use by application programs. this IPC
provides a send statement and a receive statement, which are basic primitive elements of

a message passing mechanism.

By splitting the application tasks into separate programs, which execute as
separate processes, another problem has been introduced. A process must be able to
exchange data with other processes, and must be able to activate a sleeping processes,
and must be able to activate a sleeping process when it has data ready for that process. In
a send statement, a sending process must designate a receiving process by its process
identifier. In a receive statement, a receiving process may or may not designate a sender
process by its process identifier. This is the purpose of IPC. The IPC mechanisms
include signals, events and data modules. It is possible to combine signals with user data

modules.

UMC provides mechanisms for JPC which can be used by programmers: namely
events, signals and user data modules. Events are operating systems efficient (Carrot et
al 1993), and are well suited to situations where there are control flows between tasks.
However, as with the underlying OS-9 events, the UMC events can only wait for one
event at a time. It only a few events need to be waited for then it is possible to set up a
hierarchy of events. However, this approach it not ideal as it jnvolves polling of other
events to see which one has changed value. Whilst waiting for a UMC events tasks are

suspended until either the event wait condition is fulfilled or until a signal is received.

Signal provide another way of OS-9 and UMC controlling the execution of
multiple asynchronous processes and protecting shared system resources from
simultaneous access by several concurrent processes. A task may be signalled
sequentially to multiple destinations and single task may receives signals from more than
one process. IPC using signals in UMC is based around what is already provided by
standard OS-9 functions. As with any OS-9 process which requires to receive signal,
UMC application tasks must install a signal handler before receipt of any incoming
signal, otherwise such a signal may cause the task to exit. A signal may be sent from one
task to another task using the OS-9 kill() function. One of the parameters of this function
is the process identifier (pid) of the receiving tasks, using umc_link_task() functions and
reading its 'pid' from its task sub-structure in the machine data module, using
ume_rdmodi(). This machine data siodule should be written by 'mc' when it forks the

task.

38

Jurnal Mekanikal, [ilid I, 1996

9,0 SCHEDULING AND CONTROL OF MACHINE SYSTEMS

In this study the authors considered manufacturing machine problems from three related
viewpoints, namely: planning, scheduling and real-time control. The question faced is
how can this be accomplished in the.best possible way. Planning issues concern long-
term problems including the loading, grouping and selection of jobs in manufacturing
machine systems (Basnet and Mize 1994). Scheduling problems may include resource
allocation problems over a shorter time horizon. Real-time problems are concerned with
intimate control of the real processes. Generally speaking modular, hierarchical control
structures can be mapped appropriately onto the layout of a planned manufacturing
systems and lead to clear and workable control solutions. Each modules of such a system
and relevant events and states of cach machine can be represented, activated and
communicated by using Petri-net specification technique. The scheduling ®f part
movement can be resolved by identifying the firing sequence or queue of tokens. The
problems of mapping the Petri-net modelled system onto the real hardware and software
systems can then be enabled using UMC, as developed by other MSI researchers at

Loughborough University.

10.0. BENEFITS FROM USING THE SIMULATION TOOLS

The simulation tool was designed and developed in a modular and flexible form which
can be used in both the design and operational phases of manufacturing systems. During
design a system, wide description of events and states related to each machine is handled
by a Petri-net model associated with each module or task. Communication between each
module is then accomplished via shared events with tokens for jobs or parts transferred to
other module. In a real system such tokens follow a sequence from start to finish.
During implementation and operational phases, transition delays in the Petri-net models
are directly translated into the motion of parts, this essentially being accomplished by the
drive elements built within transportation machinery (such as robots, conveyors, etc.). In
these phases, not only the current states of a machine system are mapped to the states of
tokens in the Petri-net models, but each physical machine is mapped directly onto its own
machine control module. Utilization of the UMC protocols and tools enhances further
the flexibility offered during the design and implementation of machine control systems,
this in a generalised and consistent manner. Thus, the modular Petri-net tool produced
by the first author demonstrates the following benefits:

39

Jurnal Mekanikal, Jilid I, 1996

By closely mapping characteristics of a real machine system into a modular form
of Petri-net model, not only is the modelling process more easily understood but also
implementation of control logic is more readily accomplished by converting the machine
control logic into a simulation model contained within each module. This simplifies the
design process and helps to evaluate any problems which may arise, especially in regard
to conflict and deadlock. Conflict is respect of parts movement can be resolved by
shifting the position of individual jobs in the scheduling sequence. Thus, the simulation

model helps to more definitively design the orientation of a real production system.

By separating processes of the real systems into modular elements and models
improved flexibility in terms of defining new hardware components can be facilitates,
this by adding a new modules during the modelling process. New data for each new
machine is also easily added into the relevant input data file without the need to change
other data previously input. Furthermore no changes are required o the source code

which will drive the simulation.

By having modular and flexible machine control logic as part of the proposed
simulation model, a real machine system can be scheduled and reconfigured rapidly 1o
produce multiple part types within transfer lines. For example of an input conveyor is
be added into a manufacturing cell in which it is necessary to process a different type of
part, the modelling process can be easily carried out by mapping this additional machine
into a corresponding modular Petri-net. Communication between machine components
can then be handled by shared-transition nets. Thus the simulation tool enables a large

number of multiple part types to be analysed within a given simulation period.

A fundamental requirement of flexible manufacturing machines is to achieve
appropriate levels of flexibility whilst manufacturing certain type of parts with
acceptable short times. Here processing time are highly dependent on the machine rate.
Thus, when designing a fnanufacturing machines it is considered an important criteria to
complete a certain product at the shortest time possible. The simulation tool offers a
simple way of experimenting with and analysing resultant transition delay in the
simulation model. This machine data input may be collected from the actual
manufacturing machines, especially in terms of their motion rates. Thus machine
performance criteria and utilization rates can be optimised. This form of simulation
study can play an important role in maximising the productivity of a manufacturing

process. This enabling a choice of the most suitable machines available in the market to

40

Jurnal Mekanikal, Jilid I, 1996

be made before purchasing such equipment or helping design the machine in cases where

special purpose machine system needs to be engineered.

11.0 CONCLUSION

A shared-transition Petri net based simulation tools is described which can be used to
integrate and evaluate machine control systems. In this simulation tool, a given hardware
component layout can be mapped similarly onto Petri-net objects within a modular
structure. The shared-transitions clearly identify the interfaces and communication paths
between resources used in real systems. mechanisms are included for handling resource
sharing. Furthermore, the modularity of the Petri-net modelling tool with shared-
transitions facilitates the addition or deletion of machine hardware. The data input to
modelled system can also be supplied in modular form, this making changes and analysis

much easier during planning and operational phases.

REFERENCES

1. Albus, J.S., McGain, H. G. Lumia, R., NASA/NBS Standard
Reference Model for Telerobot Control System Architecture (NASREM), Nat.
Inst. Standard and Tech, Tech Rep 1235, Gaintherburg MD, 1989.

0. Albus, 1. S., Outline Theory of Inteligence, I[EEE Transaction on
Systems, Man and Cybernetics, 21, 473-509, 1991

3. Ariffin, S., Weston, R. H., Harrison, R., A Task Level Architecture for
Machine Control Systems, Procs of the IASTED International Conference
Applied Modelling and Simulation, Lugano Switzerland, pp 204-207

4. Ariffin, S., Weston, R. H., Harrison, R., A Modular Petri-net Approach to the

Design of Distributed Machine Control Systems, Procs of the 3lst
MATADCR Conf., UWIST, UK, pp 621-626

41

Turnal Mekanikal, Jilid I, 1996

10.

L.

12.

13

14.

Basnet, C., Mize, J. H.. Scheduling and control of flexible
Manufacturing Systems: A Critical Review, Int. J. Computer Integrated
Manufacturing, 9, 340-355, 1990.

Carrot, A. J., Morley, T., Booth, A. H., UMC 3.0.3. User Guide Rev. 5, (MSI
Research Institute, Loughborough University of Technology, U.K.), 1993.

Dayan, P. S., The OS-9 Guru (A Galactic Production), 1993.

Dotan, T., Ben-Arieh, D., Modelling Flexible Manufacturing Systems: The
Concurrent Logic Programming Approach, IEEE Transactions on Robotics and
Automation, Vol. 7, No. 1, 135-149, 1991.

Dotan, Y., Using Flat Concurrent Prolog in System Modelling, IEEE
Transactions on Software Engineering, 17, 493-512, 1991.

Johnson, T. L., Baker, A.D., Trends in Shop Floor Control: Modularity,
Hierarchy and Decentralization, Procs 5th IEEE Int. Symposium of Intelligent
Control, 2, pp 45-51, 1990.

Krogh, B.H., Genter, W.L. Petri Net Analysis of a Transfer-Line
Protocol, Renssealaecr's Second Int. Conf. on Computer Integrated
Manufacturing, New York, pp 189-192, 1990.

Tsujino, Y., Ando, M., Araki, T., Tokura, N., Concurrent C: A Programming
Language for Distributed Microprocessor Systems, Software-Practice and
Experience, 14, 1061-1978, 1984.

Wiendahl, H. P., Garlichs, R., Zengragen, K., Modelling & Simulation of
Assembly System, Annals of CIRP, 40, 557-585, 1991.

Williamson, R., Horowitz, E., Concurrent Communication and

Synchronization Mechanisms, Software: Practice & Experience, 14, 135-151,
1984.

42

Jurnal Mekanikal, Jilid I, 1996

15.

16.

Yim, D.S., Barta, T.A., A Petri Net - Based Simulation Tool for the Design
and Analysis of FMS, Journal of Manufacturing System, 13, 251-261, 1994,

Zhou, M.C,, Dicesore, F., Rudolp, D., Control of flexible Manufacturing
System using Petri-nets, [IFAC Symp. Series - Procs. of a Triennial World, pp
47-52, 1990.

Zhou, M. C,, Dicesore, F., Guo, D., Modelling and Performance An Analysis
of a Resource-Sharing Manufacturing System using Stochastic Petri Nets, Sth
IEEE Int. Symp. on Int. Conf., Philly, Pens., 2, pp 1005-1010, 1990.

