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ABSTRACT 
 

Power generation plants need to produce electricity on a continuous rate to cater for the 
electricity demand of the public. The performance of the power generation plant could be 
evaluated in terms of its availability. By performing reliability, availability and 
maintainability (RAM) study, the performance of the power generation plant could be 
investigated. By using the failure and repair data of the power plant, Monte-Carlo 
simulation was conducted to predict the performance of the power plant system for the next 
25 years. From the simulation, the system uptime and downtime duration, system 
availability, failed components list, spare parts list, and labor costing were obtained. 
Maintenance planning can be planned by using the results obtained from the simulation. 
The system was observed to have an average availability of 93% for the next 25 years based 
on the simulation. 

 
Keywords: Power plant, RAM study, Monte-Carlo simulation, availability, maintenance 
planning 
 
 
1.0 INTRODUCTION 
 
The purpose of a reliability, availability and maintainability (RAM) Study is to identify 
critical components or subsystem in an operational system by calculating the RAM 
parameters, which are reliability, availability and maintainability. Through these 
parameters, the performance of the system can be determined, and any maintenance actions 
can be planned accordingly for critical components. Reliability, R(t) is defined as the 
success probability of a component or system until it reaches or exceeds mission time, t. 
Reliability is commonly quoted as the mean time between failure (MTBF) of a component 
or system. The MTBF represents the average time taken for the component to reach a failed 
state. Mathematically, reliability is represented as: 
 
 ( ) ( )R t P T t     (1) 

 
where T is the operating time of the component and t is the mission time. 
Availability, A refers to the probability that the system is operable when required. This 

parameter is used as a performance measure in this study, as it represents the overall 
percentage of time the system is operable. 
 
______________________ 
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The general equation of availability is given as: 

 

 
Total Uptime

Total Uptime + Total Downtime
A     (2) 

 
Maintainability, M(t) refers to the probability that the system can be repaired in a 

specified period of time. This parameter is defined by the mean time to repair (MTTR), 
which shows the average time taken for a component to be repaired and returned to its 
operational state. The mathematical expression for maintainability is given as: 
 
 𝑀(𝑡) = 𝑃(𝑇୰ ≤ 𝑡)   (3) 
 

where Tr refers to the repair time and t is the repair time. 
These parameters are predicted for the upcoming years based on the distribution 

parameters of the current system. The Monte-Carlo simulation is conducted to perform the 
system simulation and to generate the required data. The methodology for this study is 
derived from past literatures and adapted to the scope of this study. 
 
 
2.0 LITERATURE REVIEW 
 
2.1 RAM Study in Food Industry 
A study conducted by Tsahouras was designed to determine the critical subsystem in each 
food production line and to determine the trend of the reliability indices generated [1]. 
Different types of food production lines were reviewed and compared in terms of the RAM 
indices. Food production lines have systems connected in series configuration, which 
causes production stoppage if any of the components fails. This study was able to provide 
a good explanation regarding the concepts in the reliability engineering. 
 
2.2 RAM Study with Compressor as A System 
A study by Corvaro et al. focuses on reciprocating compressor used in oil and gas industry 
model API 618 [2]. This study is different from other studies due to the way the system 
was analyzed. The compressor is assumed as a system with the components of the 
compressor are modelled as subsystems.  

This type of RAM study is identified as subsystem level RAM study as only the 
compressor is analyzed rather than the whole system, in which the compressor is a 
subsystem. The aim of the study is to determine the availability of the compressor and then 
compare its availability with end user site project standard. The identification and ranking 
of the subsystems that are major contributors towards unavailability is also carried out to 
enable planning of maintenance activities.  

The RAM analysis is carried out in accordance to documents such as maintenance 
strategy, piping and instrument diagram, process flow diagram, process operations and 
control philosophy, and maintenance policy. The data used for calculations includes failure 
rates and model data collected from several sources. The compressor system in this study 
is assumed repairable, i.e. the components in the compressor are repairable and need 
replacing only in extreme damage cases. Reliability block diagrams are generated, and the 
analysis is performed using Monte Carlo analysis technique. 
 
2.3 RAM Study of Mining Process 
Barbera et al. carried out RAM analysis for a copper smelting process in a mining field of 
Chile [3]. The RAM study process follows the process of data collection, data management, 
calculation of RAM indicators, and analysis and interpretation of results. The major 
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difference in this literature compared to the previous literatures is in the complexity of the 
process during data management stage. 

In this literature, the data management stage is carried out by separating the subsystems 
into repairable or non-repairable equipment/components. This process is not seen in other 
literatures as it is usually assumed that the components of a system is repairable and then 
the system is modelled using traditional probabilistic distributions (Weibull, Lognormal, 
etc.). Another difference is the assumption of independent and identically distributed (iid) 
data. This assumption determines the usage of either traditional approach or stochastic 
approach to model the distribution of the data. In this literature, the iid data assumption is 
not made for repairable components so that a more accurate representation of the data can 
be obtained. Stochastic approach is used to model the data for repairable system so that we 
can consider the system change in behavior over time as the failure process in a repairable 
system will be directly related to the failure rate. 
 
2.4 RAM Study of Thermal Power Plant 
This literature discusses work done by Adhikary et al. [4], and similarly by Eti et al. [5], 
on a coal-fired thermal power plant. This study was carried out to determine the critical 
subsystems in the power plant and designing their preventive maintenance program. This 
way, the availability of the power plant can be improved. The subsystems in the power 
plant is connected in series. 

The RAM study process is almost similar to the other literatures: data collection, 
frequency of failure analysis, data analysis, distribution fitting of data, RAM Indices 
calculation and preventive maintenance interval (PMI) estimation. The process detailed in 
this literature, was adapted and used in the study explained in this paper. However, some 
slight changes were made in terms of assumptions. 

In this paper, the system is assumed to be repairable and only components with 
independent and identical distributed (iid) data are used for analysis. The procedure of the 
RAM study in this literature is very helpful in providing a framework to design our own 
RAM study. 

Other similar works for power plants are by Eti et al. [5], Murtala et al. [6] and Sarkar 
et al. [7]. An alternative method for similar study is offered by Suleiman et al. [8]. 
 
 
3.0 METHODOLOGY 
 
The general methodology for conducting a RAM study is obtained from the analysis of past 
literatures. The basic flow is given in Figure 1: 
 

 
Figure 1: General methodology for conducting a RAM study 

 
In data collection stage or stage 1, failure data needs to be collected from the power 

plant. The required data are the failure data and repair data. Companies usually employ the 
usage of maintenance logbook or the usage of computerized maintenance management 
system (CMMS). The data needs to be collected for a given period. 

In data management stage or stage 2, the data needs to be filtered and arranged for 
analysis. The data needs to undergo frequency of failure analysis, trend test and serial 
correlation test. In frequency of failure analysis, the components with less number of failure 
will be eliminated, as the reliability is nearly perfect and the effect on system reliability is 
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negligible. The trend test is conducted to ensure collected data is free of trend, or 
‘identically distributed’. Identically distributed data shows that the failure rates of the 
components are constant with no change over the years. Serial correlation test ensures that 
the failures of components are not interrelated, or ‘independent’. The previous failure of a 
component should not influence the next failure of the same component. This proves a 
proper repair task has been carried out. Independent and identically distributed (iid) data is 
a category that will be used to separate the failure data collected. 

In the RAM indicator calculations stage or stage 3, data fitting is conducted using 
goodness-of-fit test to determine the statistical distribution of the collected failure data. iid 
data can be fitted using the traditional probabilistic distributions such as Weibull and 
Lognormal. Meanwhile, non-iid data needs to be fitted using stochastic approach. 

In the computer simulation stage or stage 4, the distribution parameters of the 
components are used to generate simulated data. Inverse transform sampling method is 
used to randomly pick data from the distribution of each component. The data is then 
applied to the reliability block diagram (RBD) of the system to generate the system data. 
The RBD of the system defines the characteristic of the system. 

In the analysis stage or stage 5, the results obtained from simulation – system uptime 
and downtime, system availability and failed components list are used for maintenance 
planning. The data is used to plan for the labor cost and spare part list. 

In this study, data for stage 1-3 was collected from article by Adhikary et al. [4]. Stages 
4 and 5 were then continued as described above. The data was collected from the power 
plant maintenance logbook over a 12-year period [4]. 
 
3.1 Reliability Block Diagram (RBD) of the power plant system 
The components in a power plant are connected in a very complicated manner. RBD is 
usually generated based on the process flow diagram (PFD) of the power plant. In this study, 
the components and their connections are identified from the article by Adhikary, et al. [4]. 
The components and their connection are shown in Figure 2. 
 

Furnace Wall Tube 
(FWT)

Baffle Wall Tube 
(BWT)

Platen Superheater 
(PLSH)

Turbine (TUR)
Final Reheater 

(FRH)
Condenser 

(CON)

 
Figure 2: RBD of the system 

 
The RBD shows the components are connected in series. This can be used to determine 

the characteristic of the system. This system shown will fail if any one of the components 
fails. This characteristic needs to be accurately represented in the simulation stage. 
 
3.2 Distribution Parameters 
From the data management stage, after performing data fitting using Kolmogorov-Smirnov 
test [4], the distribution of each component shown in Figure 2 can be identified. The data 
fitting is performed for the failure data (time between failure) and repair data (time to repair) 

The distribution parameters for time between failure and time to repair data are shown 
in Tables 1 and 2, respectively. These parameters were then used in the Monte-Carlo 
simulation to obtain the simulated data for the next 25 years. 
 
3.3 Monte-Carlo Simulation 
Monte-Carlo simulation uses random input taken from the distribution if the components 
and generates the output of the system in the form of system uptime and downtime. Figure 
3 shows the basic concept of Monte-Carlo simulation. 
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Table 1: Distribution parameters of components for time between failure (TBF) data 

Component Distribution Shape Factor Scale Parameter Mean (MTBF) 

FWT Weibull β = 2.010 θ = 8775 hours 7776 hours 

BWT Lognormal 1/s = 1.797 t
med

 = 13963 hours 16301 hours 

PLSH Weibull β = 1.600 θ = 15350 hours 13762 hours 

TUR Weibull β = 2.470 θ = 14818 hours 13144 hours 

FRH Weibull β = 1.470 θ = 11638 hours 10533 hours 

CON Weibull β = 1.190 θ = 2778 hours 2619 hours 

 
Table 2: Distribution Parameters of components for Time to Repair (TTR) data 

Component Distribution Shape Factor Scale Parameter Mean (MTTR) 

FWT Lognormal 1/s = 1.330 t
med

 = 75 hours 99.50 hours 

BWT Lognormal 1/s = 0.950 t
med

 = 105 hours 182.73 hours 

PLSH Weibull β = 1.990 θ = 235 hours 208.28 hours 

TUR Lognormal 1/s = 3.413 t
med

 = 143 hours 148.27 hours 

FRH Lognormal 1/s = 1.818 t
med

 = 128 hours 148.90 hours 

CON Weibull β = 0.950 θ = 23 hours 23.54 hours 

 

 
Figure 3: Basic concept of Monte-Carlo simulation [9] 

 
The random inputs from each distribution is generated with the inverse transform 

sampling method [9]. This method randomizes the failure probability for each component 
and then generated the time data using the cumulative distribution function of the 
components. Each distribution has its own cumulative distributive function, which depends 
on the scale parameter and shape factor shown in Tables 1 and 2. The cumulative 
distributive function of Weibull distribution is [10]: 
 

 ( ) 1
t

F t e




  
      (4) 

 
where F(t) is the failure probability, t is the failure/repair time, θ is the scale parameter, 

and β is the shape factor. 
This data generation process was simplified using MATLAB coding.  Built-in functions, 

‘wblrnd’ and ‘lognrnd’ were used to create the random input for the simulation. The inputs 
were then applied to the RBD of the system to model the system characteristics. This will 
generate the system uptime and downtime data. By tracking the generated data, we were 
able to identify the failed component that caused the system failure. 
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The system simulation was repeated for 25 times, and the results were averaged. The 
number of failures for each trial is random, therefore, by repeating 25 trials, we can produce 
stable and accurate results by taking the statistics. 
 
 
4.0 RESULTS AND DISCUSSION 
 
4.1 Component Time between Failure (TBF) and Time to Repair (TTR) Data 
The results obtained from the simulation are the TBF and TTR data for each component. 
This is the input data for the system simulation.  Table 3 shows a sample of generated data 
for furnace wall tubes (FWT) from its distribution parameters. 
 

Table 3: Sample generated data for furnace wall tubes (FWT), first trial 
TBF (hours) TTR (hours) 

6210.2237 92.7766 

3003.9586 99.8483 

3391.5974 136.8222 

4332.6458 82.6455 

20334.7361 46.1057 

 
Using this data and generated data for all the components, we could model the behavior 

of the system. If any one of the components fails at a specific time, the system will also fail 
at the same time as the components which made up the system are arranged in series. The 
number of generated data for each trial is different as the data sampling process is 
randomized. 
 
4.2 System Uptime and Downtime 
System uptime and downtime results were generated using the MATLAB coding, which 
mimic the characteristic of the system specified in the RBD of the system in Figure 2. A 
sample of the system uptime and downtime graph is shown in Figure 4. 
 

 
Figure 4: Sample of components and system uptime and downtime for first year, first trial 

 
From Figure 4, we could determine the component responsible for each of the system 

failure. This shows that the MATLAB coding was able to successfully portray the 
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characteristics of the system. From this result, we could obtain the system availability and 
failed components list for each year. 

An important aspect to note in this graph is that the repair operation was done when 
failure has occurred. This shows that from simulation, we could predict the corrective 
maintenance schedule for the components and the system. 
 
4.3 System Availability 
By using the information generated for system uptime and downtime and applying the 
formula in Eq. (2), we could calculate the system availability for each year.  The calculation 
is performed for each year and for each trial.  The average, maximum and minimum 
availabilities for each one year can be obtained from the 25 trials. 
 

Table 3: Sample of system availability on yearly basis 

Year 1 2 3 4 5 … 25 
25-year 
Average 

Average 0.9616 0.9275 0.9418 0.9383 0.9291 … 0.9305 0.9319 

Max 0.9987 0.9692 1.0000 0.9773 0.9782 … 0.9810 0.9433 

Median 0.9650 0.9365 0.9512 0.9442 0.9352 … 0.9410 0.9332 

Min 0.8825 0.8444 0.8376 0.8662 0.8567 … 0.8070 0.9202 

 
From Table 3, we could observe that, on average, the system has more than 90% 

availability on a yearly basis. The same is true for the 25-year average availability of the 
system.  The availability is presented in form of average, maximum, median and minimum 
to provide a better statistical information about the availability. This is because from the 25 
trials conducted, we obtain different results for each trial and this method could give us a 
range of availability to measure our system. For example, for year 1, we could see that the 
availability has a range of 88.25 % to 99.87% with average of 96.16%. This way, the worst-
case scenario for the system during year 1 can be identified as having availability of 88.25%. 

This result can be linked to failed component list to identify the components that can 
cause the system availability to deteriorate. From the results, we can conclude that the 
system has a high availability, but there are rooms for improvements. To improve the 
system availability, we need to increase the system uptime (the time which system is in 
operation). One way to improve system availability is by performing preventive 
maintenance on predicted failing components. 
 
4.4 Failed Component List, Spare Part List and Inventory Planning 
From the generated system uptime and downtime, we could retrace the component that 
causes system failure. This data could be used to prepare for spare parts list, inventory 
planning and budgeting. In this project, the failed component is listed on a maximum 
number basis, because we could not calculate the average components required on yearly 
basis. Due to random data generation, the failure number in each trial is different causing 
this problem to arise. Therefore, using the maximum number of failed components as a 
measure, we could prepare for the worst-case scenario among the 25 trials. 

This is also part of the maintenance planning, where this information can be used as 
expected number of failures for each year. By obtaining this list of failed components, we 
could prepare for the worst-case scenario of the system. The sample of the list of failed 
components is provided in Table 4: 
 

Table 4: Sample of maximum failed component on yearly basis 

Failed component Year 1 Year 2 Year 3 Year 4 … Year 25 Total by component 

FWT 2 3 3 3 … 2 35 

BWT 1 1 1 1 … 2 18 
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PLSH 1 2 2 1 … 2 19 

TUR 1 1 1 2 … 2 17 

FRH 1 2 1 2 … 2 25 

CON 5 6 5 6 … 6 97 

 
We could use this list as the required spare part list and plan our inventory accordingly.  

The spare part list obtained would be based on the worst-case scenario of the system, as the 
failed component count is determined on maximum basis from all 25 trials. Therefore, the 
probability that the number of failure and the number of spare parts required exceeding the 
maximum limit is very low. This ensures that we would have adequate amount of spare 
parts prepared for each year and any excess spare part can be used in the upcoming years. 

In this study, we could not identify the specific spare part for each subsystem due to 
lack of data.  The generated list of spare parts provides only the required number without 
any reference to any specific parts, as it is derived from the maximum failed component 
list provided in Table 4.  The spare parts list can be used to predict the spare part cost if we 
can obtain the cost of the specific failed part of each component.   
 
4.5 Labor Cost 
Another use of the maximum failed component list is to determine the labor cost required 
to perform the repair operation.  We could not estimate the spare part costs, as we do not 
have the required data.  In this study, the time required for each repair operation is assumed 
as the MTTR of each component, as shown in Table 2. 

In this study, assumption is made on the required number of technicians for each repair 
task and the hourly pay rate for a maintenance technician. Each repair task is assumed to 
be performed by a technician.  This assumption is made because we do not have the nature 
and complexity of the failure, as repair task with higher complexity will require more 
number of technicians. The pay rate for a maintenance technician is assumed to be RM 
20.50/hour. By using the MTTR, maximum failed component list, and pay rate, we could 
estimate the required labor cost on a yearly basis as 
 
 Labor cost per component = MTTR * Pay Rate * No. of Failure   (5) 
 

The labor cost shown in Table 5 can be used as a budget planning for the power plant.  
Table 5 shows only the cost involved from the actual repair time involved, whereas in actual 
scenario, the repair time will involve administration delays, logistic delays and many more.  
The total cost for repair should also include the spare part costs. 
 

Table 5: Sample of maximum labor cost on yearly basis 

Component Year 1 Year 2 Year 3 Year 4 … Year 25 

FWT 4079.50 6119.25 6119.25 6119.25 … 4079.50 

BWT 3745.97 3745.97 3745.97 3745.97 … 7491.93 

PLSH 4269.74 8539.48 8539.48 4269.74 … 8539.48 

TUR 3039.54 3039.54 3039.54 6079.07 … 6079.07 

FRH 3052.45 6104.90 3052.45 6104.90 … 6104.90 

CON 2412.85 2895.42 2412.85 2895.42 … 2895.42 

Total Cost (RM) 20600.04 30444.55 26909.53 29214.35 … 35190.30 
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5.0 CONCLUSION 
 
Reliability, availability and maintainability (RAM) study was conducted on a power 
generation plant.  Preliminary data was obtained from an article because we could not 
obtain the failure data. By applying the reliability concepts, the reliability block diagram 
(RBD) was obtained from the process flow diagram (PFD) of the power plant. The RBD 
of the power plant is identified to be in series, which means that failure of any component 
in the system will result in the failure of the system. The distribution parameters of the 
components in the system is obtained from the article as well. Monte-Carlo simulation was 
then conducted using MATLAB programming for 25-year lifetime based on 25 trials for 
every one-year operation. The results obtained from the simulations were the simulated 
component time between failure (TBF) and time to repair (TTR), and the simulated system 
data. From there, we were able to determine the availability of the system for overall of 25 
years and on a yearly basis. The system has a 25-year average availability ranging from 
92.02% to 94.33% with an average of 93.19%. The system data was also used to determine 
the list of maximum failed component for each year.  This list is used to determine the spare 
parts lists and to calculate the labor cost for repair operation. Some basic maintenance 
planning was also discussed based on the results obtained. 
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