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ABSTRACT 
 

Stroke is one of the leading causes for disabilities that can damage the functional 
capabilities of survivors and significantly affects their ability to perform activities of daily 
living. In recent years, assist-as-needed (AAN) strategy has received significant attention 
because it can encourage the stroke subjects to achieve functional recovery for the loss of 
motor function. However, the implementation of AAN strategy only becomes possible when 
the subjects’ functional ability is known. Thus, inaccurate and inconsistent estimation of 
subjects’ functional movement or motor ability is crucial and has been a major limitation 
for the current implementation of AAN. The existing gap in literature between the current 
robotic approach and clinical practices is also another important concern that can lead to 
conflict in the near future. This paper aims to provide an overview of the AAN control 
strategies and estimation techniques found in the research literature. Hence, an overview 
of specific clinical practices in functional motor assessment and estimation procedure that 
runs parallel to the robotic system counterpart is also designed to provide the significance 
and challenges in bridging the gap between robotic and clinical practices. This review 
concludes with major findings in the state-of-the-art in AAN robotic therapy and outlines 
the procedures for clinical adoption. This study finds the necessity of further research 
required to determine the effectiveness of clinical assessment procedure alongside with the 
robotic therapy that can address this need by providing a consistent and accurate 
estimation of subjects’ functional ability. 
 
Keywords: Assist-As-Needed (AAN), control strategies, functional ability (FA), Clinical 
assessment, upper limb rehabilitation 
 
 
1.0 INTRODUCTION 
 
In recent years, the number of subjects with upper limb disability has been dramatically 
increased due to stroke, spinal cord injuries, and accidents [1]. The weakness and loss of 
the control of the upper limb can cause the subject difficulties in movement, and 
significantly reduce the subjects’ functional ability and performance of activities of daily 
living (ADL) [2]. In order to restore the subjects’ upper limb function ability and reduce 
the costs of treatment and health care, current research has converged towards more 
effective treatment methods, such as robotic therapy in lieu of the traditional rehabilitation 
therapy [3-5]. 
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Robotic therapy has been demonstrated to encourage the subject involvement in a 
rehabilitation therapy [6]. It has potential to allow multiple training sessions and to evaluate 
the performance of subject throughout a rehabilitation session [5, 7]. There is a strong 
evidence that training on the intensive movement, with many repetitions can improve the 
results of rehabilitation, whether in the each stage of the recovery or for the long term 
treatment [8]. Several strategies for offering robotic assistance have been developed in the 
recent past [9]. 

However, more focus is currently directed to the assist-as-needed (AAN) strategy which 
has become the most employed contemporary strategy in handling and supporting the 
robot-aided rehabilitation [10]. The AAN strategy has the potential to help the users in 
raising their own effort while minimizing the robot function to provide only the amount of 
assistance necessary to complete the required movements  to avoid “slacking” behavior [11, 
12]. Also, recently the AAN paradigm has been clinically demonstrated to provoke motor 
recovery in neurologically impaired subjects [13]. In order to prevent the subjects from 
relying too much on robotic assistance, some studies proposed a strategy that adjusts its 
assistance torque according to the subject’s performance [12, 14-16]. Krebs et al. proposed 
a method based on subjects’ performance progressive robot treatment, which uses 
parameters namely (speed and time) to initiate the assistance of the robotic device [14]. 
Papaleo et al.  introduced a subject tailored adaptive treatment for an upper limb robotic 
training that involves a module for estimation of subjects’ performance based on 
biomechanical data [15]. The subjects’ movement data were recorded through sensors (i.e., 
from encoders in the device and accelerometer attached on the subjects’ upper limb). 
Wolbrecht et al. proposed robotic assistance strategy based on robotic model [16]. Under 
an adaptive framework, the strategy enables a robot to learn the subjects’ functional 
capability in order to adjust the required assistance to complete targeted movements. 
Pehlivan et al. also proposed a model based strategy, which depend on Kalman filter and 
based on sensor-less force estimation of subjects’ function ability [12]. The aim of this 
technique is to vary the robotic assistance according to the subjects’ effort as administrated 
from the model-based sensorless force estimation. A major limitation of these approaches 
was the dependency on the robot-model (model errors) for the estimation of subject’s 
ability, and also the inconsistency of the functional ability estimation over time. Moreover, 
there is another salient factor not explicitly accounted for in these approaches, which is the 
actual clinical procedure [12, 13]. 

In this paper, a review on the AAN strategies is presented. In order to review the 
development of the AAN strategy in further detail, the paper is organized as follows: 
Section 1 is the review methodology while Section 2 gives a short survey of control 
strategies for upper limb rehabilitation and reviews the recent techniques for estimation of 
subjects’ functional capability. This is followed by the Section 3 that reports the clinical 
assessment of measurement. Section 4 discusses the multi joints and single joint of 
exoskeleton. Meanwhile, Section 5 provides a brief discussion and finally, the conclusion 
is given in Section 6 highlighting the important recommendations for future work as well. 
 
 
2.0 REVIEW METHODOLOGY 
 
This review aims to figure out the required research for a range of publications within the 
review scope of this work. It was executed based on various platforms by conducting search 
operation of related general papers or works published in major scientific databases. A 
number of published research papers were acquired and reviewed through these databases. 
The analysis focuses on the AAN control strategy for the upper limb and clinical 
assessment for subjects’ functional ability. Thus, works related to other fields apart from 
the general strategy, will not be reviewed.  
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3.0  CONTROL STRATEGIES 
 
3.1 Assist-as-Needed Strategy 
The AAN control strategies have been shown to be the most promising techniques for 
promoting recovery after neurological injuries as well spinal cord injury (SCI) [9]. 
Assistance towards task completion is supplied only when the subject is unable to perform 
actively [17]. With no such remedial assistance, the subject may possibly be unable to 
produce a movement which is at first or perhaps to complete the movements appropriately 
which is inside the later levels, leading to a small recovery as a result of limited responses 
[18]. The question on the required amount of assistance to be supplied, has been a subject 
of interest to many researchers leading to several proposed methods [19]. In the following 
section some methods and strategies of assistance control for the rehabilitation robotic 
therapy will be reviewed. Particular focus will be given to the robot-assisted strategies 
within the paradigm of AAN which is still, however, a subject of major hurdle [20].  
 
3.1.1 Estimation of subjects’ functional ability to direct the robotic assistance 
To gain the maximum benefit from robot assisted rehabilitation therapy, subjects should be 
actively engaged in the training session and this can be done through an AAN strategy [6]. 
The strategy encourages subjects’ active participation during physical exercise 
systematically by modulating the robotic assistance in accordance to subjects’ movement 
ability while at the same time discourage the slacking behavior in motor control. With the 
implementation of AAN paradigm, the functional ability must be known. So as to be more 
faithfully accurate and consistence, the subjects’ functional ability is needed to complete 
the targeted treatment exercises as follows: 

(1) The consistency of the estimated subject’s functional ability with clinical setting 
and the repeatability across a variety of subjects are desirable. A frequent accurate 
estimation of the subject’s functional ability while using the clinical procedures 
can give a realistic basis for implementing robotic assistance since it supplies a 
measure of the subject’s actual disability level or recovery improvement, or active 
participation [21]. 

(2) The consistency of the functional capability over time [22]. 
(3) The free functional ability estimation (i.e., not based-model) which may not depend 

on particular robotic dynamic model to be more standardized and unaffected by the 
adaptation law. A study by Wolbrecht et al. on the development an AAN control 
strategy, basically consists of the feed forward assistance in addition to the position 
controller [16]. The AAN strategy aims in inducing the neural plasticity and targets 
a wide range of severely to mildly impaired subjects as illustrated in Figure 1 that 
is important for maximizing the therapeutic benefit of robot-assisted movement 
training [23]. An adaptive seamless AAN control scheme was developed by Frullo 
et al. for the robotic evaluation and training sessions [5]. The AAN control scheme 
is shown in Figure 2, which uses a standard model-based adaptive technique and 
the feedback gain is changed on a task by task basis. This can help subjects’ 
capability to adapt to the required assistance and to provide only needed assistance 
in completing the desired tasks motions [5]. 
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Figure 1: An AAN controller diagram showing the force decay term continuously reducing the 

feed-forward assistance when errors are small [16] 
 

 
Figure 2: A block diagram of the AAN controller with the dashed line referring to a discontinuous 

update of the signal variables, i.e., the feedback gain is changed on a task-by-task basis [5] 
 

In addition, the main considerations when designing an exoskeleton control is how to 
achieve the best control performance, best user interaction, high stability safe operation and 
the control strategies for subject’s rehabilitation [24, 25]. For inducing motor learning, 
studies have shown that training is only effective if it is associated with the task-oriented 
movements involving effort by the subject [26]. 

This method is a vital requirement to obtain an effective cortical reorganization [27]. 
Wolbrecht et al. developed the model-based robotic assistance technique which permits a 
robot to learn the subjects’ capability under an adaptive control framework to direct the 
robotic assistance with complete specified movements [16]. An important contribution with 
this work is definitely the derivation and implementation of a Radial-Basis Function (RBF) 
network which actualizes the training of the subject’s movement capacity also known as 
useful ability [28] and a ‘forgetting term’ is included in the control mechanism to adjust 
the robotic assistance in accordance with the subjects’ ability, thus, providing the AAN 
therapy. Pehlivan et al. introduced a minimal assist-as-needed (mAAN) approach which 
counts on a Kalman filter based sensor-less force estimation of the subjects’ inputs or 
functional capability instead of the RBF [12]. Under this scheme, the authors attained the 
AAN strategy by: 

(1) Primary updating the derivative responses gain which usually modifies the bounds 
of the allowable error on the required trajectory. 

(2) Secondary bringing out decays a feed-forward disturbance rejection term which 
reduces the constraint on allowable quick movements. These methods successfully 
fluctuate the robotic assistance in line with the subjects’ capability determined from 
the model-based sensor-less force estimation. 
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3.1.2 mAAN and AAN strategies based on tracking error feedback 
A. mAAN Strategies 
The most utilized contemporary strategy in handling and supporting the robotic devices 
structures is the one based on the minimum assistance [29]. This encourages users’ input 
or active involvement while minimizing robotic assistance [30]. This strategy is supported 
by studies which suggest that minimizing the robotic intervention while encouraging 
subjects’ active participation can help induce neural plasticity while significantly 
promoting motor function recovery [9, 31]. Wolbrecht et al. developed an AAN robotic 
algorithm by assuming the AAN therapeutic goal as an optimization problem [16]. The 
algorithm was capable of bounding the tracking errors while still allowing learning. 

It will require the form of an error-based learning controller using a forgetting factor, 
similar to the human motor controller itself. Such a controller works for the case in which 
the primary dynamics of recovery are that of learning or strengthening a novel sensory 
motor transformation [32]. The controller could be distinguished right from previous robot 
therapy controllers that provide a fixed amount of assistance with impedance, force, or 
position controllers because it carries a “forgetting” procedure that minimizes the used 
robotic assistance as subjects’ actively. Pehlivan et al. also developed an AAN strategy 
called minimal Assist-as-Needed (mAAN) strategy based on sensor-less force estimation 
to encourage subjects’ active participation by allowing a minimum amount of robotic 
assistance [12]. Robotic intervention is reduced to a minimum and offered to the subject 
only when it is needed, with the ultimate goal of motivating neuroplasticity and increasing 
the expected likelihood of recovery in motor coordination [33]. The mAAN controller 
determines independently the capability of a subject without assuming the underlying 
pattern prior to the provision of the respective assistance. The mAAN strategy has been 
validated for the estimation of the healthy subjects’ capability using the RiceWrist-S 
exoskeleton. The results have indicated the potential use of the strategy. However, the 
drawback of the strategy is in the inconsistencies of the error-prone model-based estimation 
of subject’s movement capability. Wang et al. developed an AAN strategy with visual error 
augmentation training methods [34]. The developed assistive controller is able to provide 
minimal robotic assistance to the participant as when needed based on the position errors 
which might be visually fed back to the participant. These kinds of errors happen to be 
amplified to heighten the participant’s motivation to further improve the tracking reliability. 
However, the challenge is the fact that different error amplification gains would have to be 
tested to be able to obtain a comprehensive understanding of the visual error enhancement 
training approach [35]. 
 
B. AAN strategies based on tracking error feedback 
The various body motion assisting systems operate to meet the desired outcomes based on 
the trajectory movement [36]. The robotic systems concentrate on the following focal idea 
which is when subject’s motion is within the stipulated trajectory, there should be no 
intervention from the robot [37]. Otherwise, if there is a deviation by the subject from the 
intended trajectory, then there must be a restoring force produced by the robot [38, 39]. 
Thus, the foundation of this approach lies in the prediction of the necessary movement 
which is required by the underlying system in deciding on whether there is a need to provide 
the restoring force assistance or otherwise [40]. Rodríguez et al. introduced the anticipatory 
AAN control algorithm that is capable of ensuring that the deviation from the subjects’ 
desired trajectory is restored by giving them the anticipated force assistance [39]. In this 
way, robotic assistance is always given as a restoring force to maintain the subject on the 
reference trajectory. However, there is no experimental studies have been done to validate 
the strategy experimentally. Dao and Yamamoto proposed tracking controller based on the 
torque trajectory which utilizes a fractional derivative for the tracking purpose [41]. 
However, the method is unable to adapt the robotic assistance based AAN strategy, due to 
the fact that the subjects’ functional capability is essential. Peng et al. developed a CPG-
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inspired AAN technique based on impedance control that provides assistance according to 
errors between the robot reference and actual trajectories [42]. However, this becomes 
challenging to implement the AAN technique when the subjects’ function ability is 
unknown. 
 
C. Subject adaptive controller for AAN 
The subject adaptive controller for AAN was introduced simply by Pehlivan et al. with 
feedback a gain modification and on-line trajectory recalculation [6]. The designed 
controller is capable of changing the amount of error allowed during the movement 
execution, while concurrently estimating the forces offered by the participant that lead to 
the movement execution. The feedback gain modification and trajectory generation 
methods were authenticated using the RiceWrist system and the experimental research 
involves five healthy subjects. The controller input decreases feedback control action each 
time a subject changes his behavior, i.e. from riding passively on the robot during 
movement to actively initiating movements [6]. 
 
3.1.3 Estimation techniques for the subjects’ functional capability 
In this section, the existing techniques for estimation of the subjects’ movement ability or 
functional capability with reference to the AAN paradigm are discussed. Two main 
techniques are found in the literature namely, the Radial Basis Function (RBF) [43] and 
model-based estimation method [44]. 
 
A. Gaussian Radial Basis estimation technique 
The Gaussian Radial Basis network was originally proposed for both real-time robot 
control [45] and arm motion modeling functions [46]. It has been applied subsequently in 
many researches due to its universal approximation property [46-48]. The RBF approach 
fundamentally assumes the subject’s input to be position dependent and estimates the input 
via Gaussian RBFs distributed throughout the workspace [48, 49]. Wolbrecht et al. first 
implemented an adaptive controller with Gaussian RBFs for robot-assisted rehabilitation 
[16]. The authors integrated a forgetting factor with the RBF to decay the robotic assistance 
based on the subject’s effort. Pehlivan et al. also used the RBFs, but decoupled the input 
estimation and engagement problems by directly manipulating the subject’s positional error 
bounds [6]. Both Bower et al. and Guidali et al. improve the estimation ability of subject 
mentioned in [16] through directionally dependent RBFs [50, 51]. For a RBF to adequately 
estimate a subject’s functional capability, the subject’s ability to complete a given task must 
be strictly a function of their position in the workspace [52]. While healthy individuals can 
consistently comply with this requirement, it is difficult for neurologically impaired 
subjects due to movement disorders as in [53] and varying velocities on both torque 
production and reaching capabilities [54, 55]. Furthermore, the parameter adaptation law 
contained within the RBF based control technique do not guarantee that the parameters will 
converge to the true values, except under special conditions [12]. Thus, it is difficult to 
ensure accurate estimation of the subject input at all times. Luo et al. proposed a Gaussian 
AAN (GAAN) technique involving a RBF network which was used to model the subjects’ 
functional ability to provide the required assistance [56]. However, this approach is 
problematic because the estimates of subjects’ input are necessarily and RBF perturbed 
throughout the workspace [12]. 

 
B. Model-based sensor-less force estimation method 
Model based sensor-less force estimation method involves the use of the exoskeleton 
dynamic model to estimate the subject’s input force or torque without the need of a force 
or torque sensor [57]. This provides a basis for quantifying subject’s functional capability 
[58]. Model-based methods are attractive because they: 
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(1) provide theoretical guarantees of estimated disturbance accuracy, unlike the 
measured motor torques. 

(2) do not mandate design modifications, in contrast with the compliant elements. 
In the model-based estimation methods, subject input can be dynamically 
determined in time without any assumption of such as position or time 
dependency [59]. However, one drawback of the model-based disturbance 
estimation is that the robot’s inertial matrix inverse must typically be 
calculated [12]. Another flaw is the assumption that disturbances are constant 
unless a prediction of future disturbances is available. This might be the case 
when performing iterative tasks in which the resultant estimation trails the 
fluctuating disturbances [12, 60]. 

Finally, if the plant model is inaccurate, this technique cannot effectively distinguish 
between the reactions caused by known and unknown inputs [44]. 
 
 
4.0  CLINICAL ASSESSMENT PRACTICES IN FUNCTIONAL MOTOR 
ASSESSMENT 
 
The upper limb impaired function is actually a consequence of stroke that may be regularly 
assessed and cured by rehabilitation therapists throughout the acute and rehabilitation 
practical recovery [61]. The injuries of upper limb function restrict a subject's ability to 
perform an actions of everyday living [62] and subjects with disability possess identified 
the return of upper limb function as an essential rehabilitation objective [63].The aim of 
the therapy for subjects with an upper limb difficulty is always to improve the motor 
function in the affected part and to boost the ability with the subject to interact successfully 
in activities of daily living [64]. Therefore, therapists must use standard assessment tools 
for the measurement of subject improvement, communication regarding subject status 
between varied treatment sites within the procession of treatment, and study investigating 
the efficacy of selected interventions. 

In the effort to develop an effective control strategy for the rehabilitation system, it is 
important to know the functional motor assessment for the subjects in clinical practices 
[65]. There are several developed approaches of upper limb assessments in order to assess 
subject’s recovery following a stroke. The application that is employed for an assessment 
requires it to be appropriate and applicable to a broad variety of capabilities pursuing stroke 
[62, 66] and be insightful to the improved level of functioning aspect of the subjects [67]. 

This study focuses on the upper limb assessments functional ability to measure the 
recovery and progress level. For this purpose, these assessments are defined as measuring 
the ability of the upper limb to perform (ADL) activities of daily living [68].  

A total of nine assessments have been selected to meet the functional ability technique 
benchmarks for this work and adopted clinical measures are summarized as follows: 

i. Wolf Motor Function Test (WMFT) 
ii. Motor Assessment Scale (MAS) 
iii. Arm Motor Ability Test (AMAT) 
iv. Action Research Arm Test (ARAT) 
v. Upper Extremity Function Test (UEFT) 
vi. Chedoke Arm and Hand Activity Inventory (CAHAI) 
vii. Fugl-Meyer Assessment of sensorimotor recovery after stroke (FMA) 
viii. Motor Evaluation Scale for Upper Extremity in Stroke subjects (MESUPES) 
ix. Functional Independence Measure (FIM) 
This study focuses on the upper limb assessments functional ability to measure the level 

of disabilities and recovery progress based on two variables which are time and quality 
movement. 
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The psychometric assets of all the assessments were rated as adequate to excellent, 
demonstrating that they can be considered as suitable and consistent procedures for the 
upper limb functional ability. WMFT, AMAT, ARAT and MAS are all objective methods 
of the subject's ability to finish the tasks. 

The WMFT is utilized frequently in the field of rehabilitation to measure outcomes of 
constraint-induced movement therapy [69]. WMFT has the aptitude to easily distinguish 
between the subject’s disability levels and functioning ability movements [70, 71]. The 
revised version of the test expands can be applied to moderately impaired clients [72]. 
WMFT is considered an outstanding motor measurement scoring technique with 19 
functional assessment tests. The functional capability scale is from 0 to 5 (6 points scale), 
with the understanding that 0 is equal to no attempt and 5 is equal to normal functional 
movement. The functional ability overall rating scores is to deliberate the item scores [71]. 

The AMAT is very similar to WMFT. It truly is originally built to supplement the 
WMFT and assess the upper limb function in higher functioning stroke subjects [73]. Chae 
et al. described the fact that AMAT provides the capacity to identify the changing scale of 
motor recovery status for individuals with mild to moderate motor impairment and also to 
present constructive insight into a subject's capacity to use the paretic arm or leg just for 
useful actions [74]. On the other hand, it was also pointed out that the tendency for the 
AMAT to misjudge the limb motor status of those with more severe motor impairments 
because several tasks in the AMAT can also be challenging with respect to subjects with 
very little recovery [71]. 

The ARAT is based on observation and mainly focuses on evaluating the upper limb 
function [75]. It includes 19 tasks that are grouped into several categories to include the 
grasp, pinch, grip, and gross arm movements. These activities involve making use of the 
objects of numerous sizes and shapes, e.g., washers [76]. Every single task is specifically 
graded between 0-3 points scale with 3 points given for a task completed normally, while 
2 points given for tasks completed with difficulty, 1 point given for a partially completed 
task and 0 points awarded for an uncompleted task. The grading in this analysis was 
performed depending on the well-informed findings associated with an occupational 
specialist [77]. 

The MAS is a simple test of a subject's functional capability [78]. An Occupational 
Therapy (OT) or Physical Therapy (PT) performs the MAS selected sets of muscles by 
flexing or extending the corresponding joint over a count of one second. The muscle set is 
then scored on a scale from 0 to 4, where 0 is no increase in muscle tone, 2 is a more marked 
increase in muscle tone though most of the range of motion, but the affected part is easily 
moved, and 4 is the affected part or parts are rigid in flexion or extension [79]. 

The UEFT can be a superb evaluative strategy to determine the upper extremity 
functional impairment and the severity of disability in subjects exhibiting dysfunction in 
the upper extremity [72]. The test determines function based upon the supposition that 
intricate upper extremity actions employed in ordinary activities will be made up of specific 
movement patterns (e.g., supination/pronation, grasp/release, pinch grasp, etc.) so that 
analysis of these movements patterns can easily predict the subject’s capability to perform 
functional activities [80]. CAHAI is certainly a useful assessment tool examination of this 
regaining their hand strength after following stroke. The CAHAI compliments the 
Chedoke-McMaster Stroke Assessment [81]. 

The FMA is definitely a stroke-specific, performance-based disability index. Actually, 
it is designed to assess motor functioning, balance, sensation and joint performing found in 
subjects with post-stroke hemiplegia [82, 83]. It is applied clinically and utilized in many 
research to determine the disease severity, describe motor improvement and assess the 
therapy [84]. 

The MESUPES quantify the quality of movement functionality of the hemiparetic upper 
limb in stroke subjects. This method of the assessment was introduced by Van de Winckel 
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et al. [85] as the original version of the scale and later improved in the final version of the 
scale [86]. The novel publication of the final version of the scale is presented in [85]. 

The FIM was also initially produced to present a consistent program of description for 
disability based on the international classification of impairment, disabilities and handicaps 
for use in the medical system in the United States [87]. The level of a subject’s disability 
indicates the amount of support necessary to care for them and items are scored on the basis 
of how much assistance is certainly required for the subjects to handle actions of daily 
living [88]. In short, these robotic assessment methods involve a performance of motion 
data recorded during the evaluation portion of each therapy session and the assessments 
were quantitatively analyzed in order to evaluate the improvement in the movement 
capability of the subjects during the training engagement therapy. All of the above-
mentioned assessments methods are engaged with functional ability and their evaluation 
were based on either quality of movement or time or both of them. 
 
 
5.0  MULTIPLE JOINTS AND SINGLE JOINT OF EXOSKELETON 
 
The mechanical devices are considered for their ability to change the positions of all joints 
of the arm, not only the effector or hand [89]. As shown in Table 1, the importance of these 
fully actuated exoskeleton over a manipulator lead to significant advance of the 
rehabilitation practice [90]. A simpler process can be used with some auxiliary inputs such 
as the one proposed by Zhou et al. and Proietti et al., [91, 92]. What is significant about 
these devices is that, most of them possess the ability to quantify the chosen kinematic 
parameters as well as repetitive training sessions with a cost compared to the traditional 
methods [9]. 

There are a number of researchers who have developed robotic devices for rehabilitation 
of the upper limb. For example, Tsagarakis et al. invented a rehabilitation device that 
supports a full range of motion for the upper limb exercise therapy [93]. This machine uses 
a seven degree of freedom (7-DOF) actuation, in addition to pneumatically-actuated-
muscles (pMAs) for light weight design. The device RiceWrist-S proposed by Pehlivan et 
al. was meant for affirming the developed AAN controller algorithm experimentally [12]. 
It was a 3-DOF and able to freely actuating the user’s forearm and wrist exoskeleton, 
pronation/supination (SP), flexion/extension (FE), and radial/ulnar deviation (RU) can all 
be supported. Moreover, an electrically actuated 7-DOF robotic device introduced by 
Rosen et al  is able to accomplish 99% of the range of motion (ROM) needed for ADL [94]. 
Mihelj et al. came up with a 6-DOF, electrically actuated device, ARMin that focuses on 
creating a natural movement in the shoulder complex of the user [95]. The X-Arm2, is a 
machine devised in [96] that utilizes eight actuated and passive 6-DOF to alleviate the 
ergonomic interactions between the subjects and the machine. 

The aim of exoskeleton devices is to replicate as much as possible the human kinematic 
in the targeted joints [97]. Therefore, the alignment of the rotating axes in these machines 
with the user’s biological axes of the rotations is an importance requirement [98]. But, as 
the number of the DOFs of the device increases, the challenging and the difficulty of 
achieving the requirement increase as well, thereby requiring a more highly complex design 
[99]. This requires applying the system principles that result in more complex design to 
produce all the desirable outcomes. Studies that show functional training, which is the main 
reason behind the development of exoskeleton devices with high DOFs, does not actually 
provide more benefit than a single DOF in terms of motor functional recovery rehabilitation 
[100]. 

A recent study by Milot et al. suggests that multi-joint functional robotic training is not 
actually superior to a single joint robotic training [101]. In addition, some research groups 
tend to develop a more simplified design which focuses on the selected joints of the upper 
extremity therapy. For instance, the machine, BONES developed by Klein et al. is a 4-DOF 
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exoskeleton that could accommodate shoulder horizontal FE, upper arm internal/external 
rotation, elbow FE and forearm SP [102]. Another device called CAREX is a cable driven 
upper arm exoskeleton[103] while the L-Exos is a force-feedback arm exoskeleton that 
focuses on the proximal part of the upper extremity and could correspond to the shoulder 
rotations and elbow FE [104]. 

Lastly, the pneumatic and electrical actuators are the two most widely used actuation 
machines for the exoskeletal rehabilitation training. The biggest advantage of the 
pneumatic actuators is their high power to weight ratio that enables the design of smaller 
size/lighter machines. Parts of the pneumatically actuated devices, that uses pneumatic 
muscle actuators (pMAs) are Pneu-WREX made by Sanchez et al. [105], BONES proposed 
by Klein et al. [102] and the 7-DOF exoskeleton by Tsagarakis et al.[93] although they 
provide a higher band-width and allow the implementation of sophisticated controllers. 
Thus, the electrical actuators are mostly preferred over pneumatic counterpart in the 
rehabilitation robotics system [106]. 
 
Table 1: Summary of the control strategies by previous researches on the AAN control strategies 

References 
Control 
Strategy 

Name of 
Devices 

DOF Main Outcome 

[6] 

 
 

AAN 
 

 
 

RiceWrist 3-
DOF 

They present a robotic system that features an AAN 
controller with a feedback algorithm and a real-time 
trajectory for subject adaptive control. The outcomes 
show that the developed system is accurate in 
estimating the environmental forces applied by the 
subject during therapy 

[5] 
Effect of 

AAN 
 

MAHIExo-II 
4-

DOF 

The evaluation of the effect of two different 
interactive schemes implemented on the MAHIExo-
II robotic upper limb exoskeleton. 

[107] 

Model-
based 
AAN 

 

Robotic 
platform 3-

DOF 

Controller is able to provide the operator with the 
desired level of assistance as governed by the model-
based paradigm. 

[108] 
AAN 

 
Manipulator’s 
end-effector 

6-
DOF 

Maximize dart throwing score and minimize robotic 
physical assistance. 

[109] 
AAN 

 
PASCAL 4-

DOF 
Deviation of the trajectory was minimized. 

[12] 
mAAN 

 
RiceWrist 

3-
DOF 

Model-based sensor-less force estimation regulates 
and determines the subject’s capability. The control 
law using mAAN provides only the required aid. 

[110] 

Stability-
Guaranteed 

AAN 
 

One-degree-
of-freedom 

forearm 
orthosis 

1-
DOF 

Stable AAN controller for Powered Orthoses that can 
simply adopt and assist a subject’s voluntary motion.

[39] 
AAN 

 
VR simulator 

 
1-

DOF 

Anticipatory actuation for the subjects, avoiding 
trajectory deviations and minimizes the degree of 
actuation. 

[111] 
AAN 

 
Pneu-WREX 

 
4-

DOF 

Improvements in Fugl-Meyer Assessment (FMA) 
score. High improvement in functional ability, as 
measured by the Nottingham Sensory. 

[101] 
AAN 

 
BONES 

6-
DOF 

Improvements in FMA and functional tests WMFT, 
with no differences between the multi joint/single 
joint training. 
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6.0  DISCUSSION 
 
In this research, the analysis and focus were on the AAN and related control strategies for 
the robotic exoskeletons for neurorehabilitation in which the review includes a number of 
publications describing its existing devices. Several issues that contributed to the 
rehabilitative performances of current exoskeleton devices were spotted and highlighted. 
The analyses focus on the controller that features the implementation of the AAN controller 
algorithm. It is important to underline how this AAN strategy is a different problem from 
controlling the exoskeleton, hardware limiting control strategies and input estimation 
possibilities. In the previous work which discussed above and relatively related to AAN 
controllers for robotic rehabilitation have used different types of control strategies such as 
impedance controllers to regulate assisting forces based on deviations from desired 
trajectories [112]. AAN controllers based on an adaptive control architecture and adaptive 
control combines Gaussian radial basis functions for estimating interaction forces, as earlier 
proposed by Tondu et al.[106] and later proposed by Wolbrecht et al.[16] for rehabilitation 
applications.  Impedance schemes have been frequently employed within the context of 
AAN control, where their controller properties are modified based on subject performance. 
However, these approaches are also oblivious to more complicated subject capabilities and 
may therefore intervene sub-optimally across the robot workspace [12]. Also, adaptive 
controllers that model the subject's functional capability have been proposed within AAN 
algorithms. Specifically, Gaussian radial basis networks which possess a universal 
approximation property [47] have been frequently included in adaptive controllers for 
estimating interaction forces. However, this approach relies on the Gaussian radial basis 
which is not consistent and not accurate over the time. It is task-space position dependent 
and parameters convergence under an adaptive control framework of this kind is not always 
guaranteed [13]. Also, this method reliance on the robot model and the model errors always 
exist and can significantly excite the disturbance term making it difficult to correctly 
distinguish the contribution of the subject’s input, as different robot structures has different 
models which can make it hinder to be standardized for clinical setting.  

The literature review findings pertaining to the main challenges were in relations to 
efficiently and consistency in the determination of subjects’ performance in order to 
regulate robotic assistance. Henceforth, the above objective is essential to determine the 
amount of assistance needed. The literature depict the two classifications which are likely 
used: (kinematic and biomechanics) sensor-based and model-based techniques [12, 14, 16, 
113]. However, in order to overcome these challenges, the newly proposed AAN strategy 
can obviously be necessary to serve as a mitigating tool with the current robotic control 
strategies [114, 115]. Based on the limitations of the previous strategies, there is a real need 
for a new free-model which is based on subject’s ability or disability levels, consistent and 
accurate in the desired subject’s movement estimation, safe and clinically approved by 
regulators. Thus, these advances can have a huge clinical impact in accelerating recovery 
and improve functional independence and quality of life in these subjects [116]. 

Experienced rehabilitation therapists advocate AAN control strategy due to the intrinsic 
potential to improve motor function control. In terms of implementation, however, the 
concept of AAN is still vague, because different levels of assistance could be applied 
according to specific applications. Typical AAN schemes determine the amount of 
assistance based on functional capability. This however presents a major challenge as the 
existing strategies for functional capability estimation are neither repeatable nor consistent 
with clinical procedures. The main findings obtained from this study of (AAN) can be 
reviewed as: 

 There is not a single concrete technique for the estimation of subjects’ functional 
ability that is free from robotic model. 
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 There is a lack of accuracy and consistency in the estimation of subjects’ functional 
ability over time or range of subject population. 

 To date, a number of works are on-going to evaluate the therapeutic efficacy of the 
AAN control strategy by a clinical trial.  

 Most of the papers’ main efforts are focused on developing the exoskeleton devices, 
however, the control of these robotic rehabilitation remains an open-ended research 
area. 

 
 
7.0  CONCLUSION 
 
With an increase in subjects with impaired mobility or motor functional disabilities, there 
is no doubt that Assist-as-Needed (AAN) controller strategy will have significant roles in 
robot-assisted therapy. Furthermore, the use of AAN strategy is also promising in 
rehabilitation training therapy, which assist the subject to complete the task only when 
needed. In this paper, a comprehensive review has been presented which analyze and 
classify the literature on the AAN controller strategy and functional ability estimation 
techniques. The existing gap between the current robotic approach and clinical practices 
was also studied. There is limited work done relating the actual clinical assessment with 
the AAN control strategy. Thus, it is deemed significant to improve the current AAN 
strategies for future use, focusing on how to develop a more accurate and consistent 
estimation technique for subjects’ functional ability and following clinical tools to ensure 
the best motor function recovery of the upper limb. 
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