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Graphical Abstract 

ABSTRACT 

The manufacturing process of a material is a strong determinant of its performance in service. Different 

applications like ships, wind turbine blades, oil rigs, etc. demand materials with low water absorption due to their 

operational environment. Previous studies have reported the water absorption behavior of cellulosic fiber-

reinforced composites but the optimization of the water absorption properties of pineapple leaf/glass fiber hybrid 

reinforced epoxy composites by optimizing its manufacturing parameters have not been studied even with its 

possible wide range of application. This paper uses the Taguchi robust optimization technique and statistical 

analysis to optimize the water absorption properties of a pineapple leaf/glass fiber hybrid reinforced epoxy 

composite material PxGyEz (with x, y, and z representing the volume fraction of pineapple leaf fiber (PALF) (P), the 

volume fraction of glass fiber (G), and fiber length in an epoxy matrix, respectively). P15G15E20 was the optimum 

having the lowest water absorption of 0.2667%. A notable observation was that fiber length had a significant 

contribution to the water absorption properties of the material. The interaction effect percentage contribution of 

fiber length with the cellulosic fiber and the glass fiber on the percentage water absorption at mean values was 

found to be 49.37% and 14.24% respectively. SEM and FTIR analysis showed microstructural and chemical 

formations that explained the water absorption behavior of the optimized hybrid composite. The percentage water 

absorption of the material was modeled mathematically and the equations proved to be 95.6% accurate in 

predicting the water absorption of the material at different combinations. 
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1.0 INTRODUCTION 

 

The exposure of materials to different environments such as water, heat, stress, etc. can cause deterioration of their 

physical or mechanical properties (Sethi et al., 2015; Liu et al., 2020; Dayo et al., 2020; Kepir et al., 2021; Sari et 

al., 2021; Dutt et al., 2020; Li et al., 2020; Ye et al., 2020; Huang et al., 2020; Perović et al., 2020). Natural 

cellulosic fibers (Geremew et al., 2021; Ravindran et al., 2020) have increasingly been applied in the development 

of composites for engineering applications. The ability to tailor and enhance the properties of composite materials to 

meet expected performances have increasingly made them find applications in manufacturing and engineering 

(Karthi et al., 2020; Mirabedini et al., 2020; Nagaraj et al., 2020; Saroia et al., 2020; Feng et al., 2020; Eslahi et al., 

2020; Zheng et al., 2020; Saman et al., 2021). As a result of modifications in its preparation processes, content, etc. 

variable material properties, such as low water absorption, can be obtained for the intended application (Sadasivuni 

et al., 2020; Wang et al., 2020; Su et al., 2020). Also, over time, the mechanical and physical properties of these 

composite materials have been improved enough to be compared to traditional materials like steel (Chavhan et al., 

2020; Jovanović et al., 2021; Mirabedini et al., 2020; Devaraju et al., 2020; Alsubari et al., 2020; Zhang et al., 

2020; Kerni et al, 2020; Wang et al., 2020).   

Fiber usually acts as composite material reinforcement (Bahl, 2021; Rubino et al., 2020) and could be fibrous  

(strands) or non-fibrous (powder) (Gopalraj et al., 2020; Syduzzaman et al., 2020; Saha et al., 2021). The matrix 

holds these reinforcements which are embedded in it together, and also serves as the medium of stress transfer to the 

fibers. Omrani et al., (2016) described reinforcements as a strong influencer on the composites materials appearance, 

environmental friendliness, durability, etc. 

Natural cellulosic fibers have increasingly been employed for reinforcement in composite materials, owing 

to their remarkable properties such as environmental friendliness, low density, high impact strength, and 

exceptionally high tensile strength (Alsubari et al., 2021; Ovali et al., 2020; Saleem et al., 2020; Narayana et al., 

2021; Kerni et al., 2020; Mulenga et al., 2021; Jeyapragash et al., 2020; Kumar et al., 2020). Some plants fibers 

such as banana, coir, sisal, kenaf, etc. have been widely investigated as reinforcements for composites applicable in 

technical or industrial environments as natural fibers have improved the physical and mechanical properties of 

composites (Kerni et al., 2020; Li et al., 2020; Rangappa et al., 2020; Gholampour et al., 2020; Rohan et al., 2018; 

Kumar et al., 2019; Mahir et al., 2019; Thyavihalli et al., 2019; Ngo, 2018; Njoku et al., 2019; Petroudy, 2017; Carr 

et al., 2017). Natural fibers for the development of polymer-based composites have scarcely been explored due to 

their poor interfacial bonding with the matrix material and hydrophilic characteristics although many attempts have 

been made on improving the interfacial bonding by surface treatment of the fibers (Asim et al., 2015; Agrebi et al., 

2020; Tongphang et al., 2019; Rajeshkumar et al., 2020; Kengkhetkit et al., 2018; Hoque et al., 2021; Senthilkumar 

et al., 2021; Radoor et al., 2020; Zin et al., 2018; Ba et al., 2020). Also, part of the setback of natural fibers are their 

hygroscopic nature (affinity to water: the ability to absorb water more easily) and this also put them at a 

disadvantage in the development of composites for humid applications (Chandrasekar et al., 2017; Yourseng et al., 

2020; Dixit et al., 2017; Maslinda et al., 2017; Väisänen et al., 2017; Chandramohan et al., 2019). Surface 

treatments have proven to be effective in regards to the reduction of the water absorption and increase in mechanical 

properties of these natural fibers and their composites. Hybridization in fiber reinforcement implies the inclusion of 

two or more distinct (in physical attributes or type) fibers in a matrix for the development of a single composite 

material such as the development of a natural fiber and glass fiber hybrid reinforced epoxy composite (Ramasamy et 

al., 2021; Gangil et al., 2020; Shahzad et al., 2017; Ali-Eldin et al., 2021; Genc et al., 2020). Beyond distinct fibers, 

hybridization may involve the reinforcement of a matrix material with a single kind of fiber but with different 

features like diameter, length, etc. (Mulenga et al., 2021; Ahmad et al., 2021; Potluri, 2019; Alhijazi et al., 2020). 

Different factors like fiber length, fiber percentage content, fiber orientation, fiber source, fiber treatment, fiber, etc., 

have shown to be of significant effect on the mechanical properties of the composite material (Yashas et al., 2018; 

Ansari et al., 2018; Tang et al., 2020; Todkar et al., 2019; Sun et al., 2018). 

Developing materials with a high strength-to-weight ratio that is biodegradable and of low environmental 

interactions (such as chemical reactions, water absorption, etc.), and also of which cannot initiate deleterious 

processes (such as corrosion and material shedding, fiber pull out, etc.), affecting its mechanical properties, is a 

challenging task for engineers and scientists. The frontiers of technology have been pushing beyond environments 

with normal conditions to very harsh environments with high temperature, high pressure, high humidity, high 

chemical activity, etc. (Lv et al., 2018; Mahato et al., 2018; Friedrich et al., 2018; Berretta et al., 2017; Rajak et al., 

2019). And with all these, there has always been a need to build materials that are sustainable and friendly to the 

general ecosystem (Nguyen et al., 2020; Shim et al., 2019; Raza et al., 2021; Cenci et al., 2021). Due to their low 

density and environmental friendliness, cellulosic fibers derived from plant sources have recently been gaining 
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attention in a variety of sectors. However, due to their hydrophilic nature, these natural fibers like pineapple leaf 

fibers have been underutilized (Saha et al., 2021; Keerthi et al., 2021; Lee et al., 2021; Venkatarajan et al., 2021).  

PxGyEz Hybrid Composite is a natural and synthetic fiber hybrid reinforced epoxy composite. It exploits the good 

physical, mechanical, and environmental friendliness of pineapple leaf fiber (PALF) at x% fiber content in the 

hybridization with glass fiber at y% content and all fibers at fiber lengths Zmm in an epoxy matrix. Although glass 

fiber has excellent mechanical characteristics, it is non-biodegradable, whereas pineapple leaf fibers, which are 

abundant owing to their status as agricultural waste, have a low density and are ecologically benign, but are 

hydrophilic, meaning they have a high propensity to absorb water from their environment. 

There has been an exponential increase in processing power in recent years, which has been accompanied 

by better algorithms. Different researchers in diverse domains have satisfied advanced design criteria by using these 

computational tools in conducting analytical analyses (Aronica et al., 2021; Yan, 2021, Chen et al., 2021). These 

modeling and optimization strategies have addressed the issues in physical complexity that are commonly faced in 

scientific and engineering research. Researchers in the field of materials have been experimenting with these 

strategies to improve the mechanical and physical properties of composite materials (Abifarin, et al., 2019; Abifarin, 

2021; Abifarin et al., 2021a, 2021b, 2021c; Samuel et al., 2021a, 2021b; Karna et al., 2012; Taguchi et al., 1987; 

Taguchi, 1993). The fiber length and content ratio have proven to be of influence in the mechanical behavior and the 

water absorption properties of the composite materials (Venkateshwaran et al., 2011).  

The influence of cellulose fiber content and fiber length on the water absorption capabilities of cellulosic 

fiber composite is investigated in this study. Previous studies have been carried out on the water absorption 

properties of natural fiber composites (Bachchan et al., 2021; Rahman et al., 2021; Alsubari et al., 2021; Mulenga et 

al., 2021; Venkatarajan et a., 2021) However, no research has been conducted to optimize the water absorption 

capabilities of pineapple leaf/glass fiber composites. Within the restrictions of these variable parameters, this work 

will use the Taguchi robust design to optimize the combination of development factors of pineapple leaf fiber, glass 

fiber, and fiber length to produce the best (lowest) water absorption of the PxGyEz hybrid composites. The software 

Minitab®2019 will be used for the analysis. 

 

 

2.0 EXPERIMENTAL METHODS 

 
2.1 Fiber Preparation 

 
Pineapple leaves that were 12-18 months old were obtained from a local farm in Nigeria and extraction of the fiber 

was carried out using the wet retting fiber extraction method and the physical method. The pineapple leaf fiber was 

surface treated (modified) in line with the method of Mittal and Chaudhary (2018). For the surface treatment, the 

fibers were cleaned, sun-dried, and immersed in a solution of 4wt% NaOH for 24 hours at ambient temperature. The 

alkalization was carried out for the main purpose of addressing the hydrophobic nature of the material. To improve 

interfacial bonding between the fiber and the matrix, treatment with a solution of 2wt% acetic acid (CH3COOH) was 

carried out. The treated fibers were then rinsed to control the pH at neutral (7). The treated and rinsed fiber were 

oven-dried at 90℃ for 24hours until constant weight (complete drying) was observed. Glass fibers in strands form 

were procured from Maersk Chemicals. The treated pineapple leaf fibers and the glass fibers were cut to the desired 

length. Figure 1 and Figure 2 illustrate the fiber extraction and treatment process respectively. 
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Figure 1: Pineapple leaf fiber extraction process 

 
Figure 2: Pineapple leaf fiber treatment process 

 

2.2 Composite Preparation 

 

The total volume of material needed was calculated from the dimension of the mold used which was a 

200mm×200mm×3mm steel mold. Initially, the fibers were cut to the appropriate length and dispersed in a 

calculated volume of Epoxy (Bisphenol F) resin and stirred gently until there was a complete mix, dispersion, and 

wetting of the fibers by the matrix. The hardener was thereafter introduced into the mix in an Epoxy to hardener 

ratio of 5:1 and then poured into the mold. Initially, wax as a releasing agent was applied to the surface of the mold. 

Brushes and rollers were used to disperse the mixture through the mold and also helped in removing voids in the 

mixture. The mixture in the mold was then transferred to the hydraulic press, under the pressure of 20MPa, and a 

temperature of 165℃ for 72hrs where the air in between was forced out. Curing took place under normal 

atmospheric conditions after complete setting under the press. The composite production process is shown in Figure 

3. 
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Figure 3: Preparation of PxGyEz composite 

 

2.3 Water Absorption Test 

 

ASTM D570 and ASTM 5229M-12 procedures were adhered to in the waster absorption testing of the composites. 

Initially, after oven drying, the initial weight of the samples was recorded. Under ambient conditions, the weighed 

samples were immersed in water and the weight changes were recorded within intervals of 24 hours until no change 

in weight is recorded. Then the total amount of absorbable water is obtained using Equation 1. 

 

%𝑊 =  
𝑊𝑓− 𝑊𝑖

𝑊𝑖
 × 100     (1) 

 

Where Wf = weight after placing in water; Wi = weight of the samples before water immersion. Three trials were 

carried out for each composition to know the actual water absorption character of the optimized composition. Also, 

the density of the materials was obtained through the Archimedes method in which the materials were dipped in 

water and the displacement measured as the volume. The mass was measured directly using an AGN200 weighing 

balance and the density was obtained by dividing the mass by the volume. 

 

2.4 Taguchi Approach to Robust Parameter Design 

 

This study applies the Taguchi technique in the optimization of the cellulosic/synthetic fiber hybrid reinforced 

composite PxGyEz for low water optimization by the selection of the best combination of the development 

parameters. In the Taguchi optimization technique, the concept of signal-to-noise ratio implies a deviation of the 

measured effect from the desired values. It is a ratio of the signal expected (measured value) to the nose 

(uncontrollable variable). Water absorption is considered in regards to the lower the better and the S/N ratio for the 

lower the better is presented in Equation 2.  

 

(
𝑆

𝑁
)

𝐿𝑇𝐵
= −10 ∗ 𝑙𝑜𝑔10 (

1

𝑛
∑ 𝑦𝑖

2𝑛
𝑖=1 )     (2) 

 

Where n, yi, represents the number of experimentations, response value (water absorption) of the ith experiment (run) 

in the orthogonal array. LTB denotes “Lower the Better.” Optimization and statistical analysis were carried out 

using the Minitab® 19 software while graphical illustrations were developed with the Origin Pro 2019b. Table 1 

presents the variable parameters considered for the development of the material for low water absorption. The 

cellulosic fiber (PALF) content, glass fiber content, and fiber length were the factors considered in three levels each.  
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Table 1: Variable parameters and their levels 

 

S/N Processing Factors 
Factors 

Designation 

Level 

1 2 3 

1 PALF Volume Fraction (P) (%) x 10 15 20 

2 Glass Fiber Volume Fraction (G) (%) y 20 15 10 

3 Fiber Length  (E) (mm) z 15 20 25 

 

The minimum number of runs (experiment/combination) needed for three factors and three levels as presented in 

Table is calculated from Equation 3. 

𝑁𝑇𝑎𝑔𝑢𝑐ℎ𝑖 = 1 + 𝑁(𝐿 − 1)     (3) 

 

Where NTaguchiis the minimum possible number runs. N and L are the numbers of factors (variable parameters) and 

the number of levels of those factors. Therefore NTaguchi= 9. 

 
Table 2: The Orthogonal Array L9 

 

Run 

Levels of parameter Settings 

PALF Volume 

Fraction% (x) 

Glass Fiber Volume 

Fraction% (y) 

Fiber 

Length mm (z) 

1 10 20 15 

2 10 15 20 

3 10 10 25 

4 15 20 20 

5 15 15 25 

6 15 10 15 

7 20 20 25 

8 20 15 15 

9 20 10 20 

 

 

3.0 RESULTS AND DISCUSSION 

 

Figure 4a shows the extracted and untreated fiber and Figure 4b shows the treated fiber. From a deep brown color, 

having lignin attached to the body of the fibers, the treatment (surface modification by alkalization) produced a 

cleaner and golden-colored fiber with fibers more dispersed because of the reduction in lignin content.  
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Figure 4: (A) Untreated and (B) Treated cellulosic fiber 

Table 3 shows the percentage water absorption of the composite at different combinations of the factors under 

investigation. The general water absorption percentage mean is 3.64% and the S/N ratio is -9.9508dB. 

 
Table 3: Mean and S/N Ratio of Percentage Water absorption of PALF/Glass Fiber Epoxy Hybrid composite 

 

Trial 

No. 

Levels of parameter Settings 

Mean Water 

Absorption (%) 
S/N ratio (dB) 

PALF 

Volume 

Fraction% 

(x) 

Glass Fiber 

Volume% 

Fraction (y) 

Fiber 

Length 

mm (z) 

1 10 20 15 7.05 -16.9648 

2 10 15 20 1.95 -5.7947 

3 10 10 25 2.15 -10.0382 

4 15 20 20 2.12 -6.6086 

5 15 15 25 1.93 -6.5619 

6 15 10 15 5.37 -6.5403 

7 20 20 25 6.88 -16.7573 

8 20 15 15 3.18 -14.6023 

9 20 10 20 2.13 -5.6892 

   Mean: 3.639 -9.9508 

 

Table 4 presents the response table for the mean percentage water absorption and S/N ratio. These were obtained 

from the average of the responses in Table 3 as described in Equation 4 where 𝑆𝑃𝑖 is the average response of a factor 

on a level, 𝜂𝑖𝑛 is the mean or S/N ratio percentage water absorption for each run. 𝑙 and 𝑛 are the numbers of levels 

and number of runs respectively. 

 

𝑆𝑃𝑖 =
∑ 𝜂𝑖𝑛

9
𝑛=1

𝑙
       (4) 

 
Table 4: Response table for percentage water absorption 

 

Level 
PALF % Composition 

(X) 

Glass Fiber % 

Composition 

(Y) 

Fiber Length 

(Z) 
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Mean 

Water 

Absorption 

S/N Ratio 

Water 

Absorption 

Mean 

Water 

Absorption 

S/N Ratio 

Water 

Absorption 

Mean 

Water 

Absorption 

S/N Ratio 

Water 

Absorption 

1 3.713 -9.789 3.213 -9.258 5.200 -13.868 

2 3.140 -8.944 2.350 -7.174 2.067 -6.299 

3 4.063 -11.119 5.353 -13.421 3.650 -9.685 

Delta 0.923 2.175 3.003 6.247 3.133 7.569 

Rank 3 3 2 2 1 1 
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Figure5a: Effect of Cellulosic Fiber Content on the Water Absorption of PxGyEz  
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Figure 5b: Effect of Glass Fiber Content on the Water absorption of PxGyEz  
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Figure 5c: Effect of Fiber Length on the Water Absorption of PxGyEz  

 

Figure 5 (a, b, c) shows the effect of these manufacturing parameters on the water absorption of the cellulosic fiber-

reinforced material PxGyEz. They are graphical representations of the response table in Table 4. It is important to 

note that irrespective of the S/N processing (Higher the better, Nominal the Best, and the Lower the Better), the 

highest S/N is the most desired. That implies that the higher the S/N ratio, the closer the measured effect is to the 

desired (optimum) value. And the mean is a direct presentation of these effects, even though the process noise is 

dampened by the S/N ratio. Therefore, from the graphs, the point at which the mean is at lowest effect, the S/N will 

be of highest effect (since it is always considered at the Higher the Better). The discussion of the effect mechanism 

will be based on the mean observed. 

From Figure 5a, it is observed that increasing the volume content of the treated cellulose fiber (PALF) did 

not negatively affect the water absorption of the composite. Implying that an increase in the content of surface-

treated cellulosic fibers in an epoxy-based composite does not necessarily increase the water absorption of the 

material. Instead, it results in reduced water absorption. This is due to the surface treatment of the cellulosic fiber, 

leading to a smoother surface, increasing the adhesion, and thereby closing the fibrillary gaps (gaps between the 

polymer and fiber). The reverse in the trend at 15% of the cellulosic fiber is due to the increase in fiber ends and 

surface area whereby the point of contact with moisture is increased. Also, at an increased volume, the intermingling 

(fiber to fiber contact) can lead to increased flow or transfer of the moisture through the material. But at a lower 

volume, when there is no fiber-to-fiber contact, the polymer forms a coating around most of the fiber inside the 

material, leaving no exposed endings and this reduces the possibility of absorbing water when exposed to such an 

environment. This general trend indicates that surface treatment of cellulosic fiber is effective in reducing its water 

absorption properties. Figure 5b shows that increasing the volume content of the glass fiber does not increase the 

water absorption. This is because of the glass fiber material property as its crystalline nature has a low affinity to 

absorption of water, unlike the cellulose-based natural fibers. Although, at an increased fiber content (15%), the 

increase in fiber ends and more surface areas increase the water absorption properties. The trend of water absorption 

at different fiber lengths corroborates the observations of the volume content of the fibers. From Figure 5c, 

increasing the fiber length reduces the number of fibers and therefore the number of ends through which water can 

be absorbed. But at 20mm, where fiber to fiber interaction begins, the water absorption increases as the fiber length 

increases this is because there can be an easy transfer of water from one fiber to another.  

Generally, the optimum composition of PxGyEz for the lowest water absorption property is at a cellulose 

fiber (PALF) volume content at 15%, 15% glass fiber volume content, and fiber length at 20mm. This implies that 

the cellulosic fiber-reinforced PxGyEz hybrid fiber composite is optimum at P15G15E20. 
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Figure 6 shows the FTIR of the developed composite reinforced with cellulose-based fiber. The broadband observed 

at 3347cm-1 is characteristic of the cellulose fiber (PALF) and it is an indicator of the presence of the OH group and 

an affinity to absorb water as reported by Asim et al., (2015), Fan et al., (2012), and Senthamaraikannan et al., 

(2018). Sultan et al. (2020) attributed the reduction in these bands to acid exposure during the treatment. Implying 

that different treatments (in respect to the type of acid used, the concentration, and the exposure time) will reduce 

the water absorption properties of the fiber materials. 
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Figure 6: FTIR of the optimized PxGyEz 

 

 
Figure 7: SEM Images of (A) Lignin removal from the cellulosic fiber (B) Polymer adhesion to Glass Fiber  

 

The SEM images in Figure 7A showed that the fibers upon treatment (removal of the lignin) had rough surfaces 

which increases its adhesiveness to the polymer matrix material, therefore reducing the interfacial water movement. 

Also, it is seen that the method of treatment adopted in this study needs to be improved upon as traces of lignin 

could still be observed on the cellulose fiber. In Figure 7B, the glass fiber at the fracture site is shown. Adherence of 

the matrix material to the glass fiber even after fracture establishes the possible resistance to interfacial movement of 
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water, reducing the water absorption in agreement with the study of Annappa et al., (2021). Also, the glass 

crystalline nature as explained earlier serves as strong resistance to intra-fiber moisture movement and fiber-to-fiber 

moisture movement. That is why the increase in glass fiber leads to the drop-in water absorption as shown in the 

mean effect of glass fiber on the water absorption of the material. 

 

3.1 Analysis of Variance (ANOVA) 

 

The analysis of variance of the effect of the variable parameters on the response is presented in Table 5 (for means) 

and Table 6 (for S/N ratios).  

 
Table 5: Analysis of Variance of Means for Water Absorption of cellulose fiber reinforced PxGyEz Hybrid composite. 

 

Source DF Seq SS Adj SS Adj MS 
Fishers 

Test: F 
P Value 

% 

Contribution 

(%) 

Regression 6 36.7121 36.7121 6.1187 9.4319 0.098948  

PALF 

Volume 

Fraction (%) 

(x) 

1 0.1836 23.0347 23.0347 35.5079 0.027026 0.48 

Glass Fiber 

Volume (%) 

Fraction (y) 

1 6.8653 1.2174 1.2174 1.8766 0.304237 18.06 

Fiber Length 

(mm) (z) 
1 3.6024 15.7896 15.7896 24.3396 0.038715 9.48 

x*y 1 1.8829 14.2866 14.2866 22.0227 0.042532 4.95 

x*z 1 18.7666 22.8457 22.8457 35.2165 0.027241 49.37 

y*z 1 5.4112 5.4112 5.4112 8.3414 0.101890 14.24 

Error 2 1.2974 1.2974 0.6487   3.41 

Total 8 38.0096      

Tabulated F-ratio at 95% confidence level, DF= Degree of freedom, SS=Sum of square, MS=Mean Square 

 

 
Table 6: Analysis of Variance of S/N Ratio for Water Absorption of cellulose fiber reinforced PxGyEz Hybrid composite. 

 

Source DF Seq SS Adj SS Adj MS 
Fishers 

Test: F 
P Value 

% 

Contribution 

(%) 

Regression 6 170.827 170.827 28.4712 3.5450 0.236315  

PALF 

Volume 

Fraction (%) 

(x) 

1 3.012 79.780 79.7797 9.9336 0.08764 1.61 

Glass Fiber 

Volume (%) 

Fraction (y) 

1 54.379 7.725 7.7253 0.9619 0.43013 29.10 

Fiber Length 

(mm) (z) 
1 3.760 0.017 0.0174 0.0022 0.96714 2.01 

x*y 1 16.986 93.373 93.3730 11.6261 0.07630 9.09 

x*z 1 3.361 58.789 58.7889 7.3200 0.11377 1.80 

y*z 1 89.329 89.329 89.3290 11.1226 0.07935 47.80 

Error 2 16.063 16.063 8.0313   8.59 

Total 8 186.890      

 

Tabulated F-ratio at 95% confidence level, DF= Degree of freedom, SS=Sum of square, MS=Mean Square 
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The analysis of variance corroborates the findings discussed earlier. It is noteworthy that the percentage contribution 

of the cellulosic fiber (mean-0.48%, SN-1.61%) as seen in Table 5 and 6 is significantly lower than the glass fiber 

(mean-18.06%, SN-29.10%). This may not only be due to the surface treatment of the pineapple leaf fiber (as the 

surface treatment is directly meant to transform the surface of the cellulosic fiber, making it smoother and more like 

the glass fiber) but also the geometric property of the fiber in which the average size of the pineapple leaf fiber is 

larger in multiple time to the size of the glass fiber. The effect of the fiber size and possibly, fibrillation, is evident in 

the contribution of the fiber length (mean-9.48, SN-2.01) to the percentage water absorption of the PxGyEz 

composite. Fiber to fiber interaction or even fibrillation can be a possible effect of this fiber length which gives it a 

commendable contribution to the water absorption properties of the material. That is why it was observed earlier in 

Figure 5 (a, b) that there was no negative effect on the water absorption property of the composite until after a 

volume ratio when there may be possible fiber-to-fiber contact. The interaction between the cellulosic fiber and fiber 

length agrees with the finding of Bhagat et al. (2014) that fiber geometry is effective in respect to the water 

absorption properties of the developed composites. The interaction of the cellulosic fiber with the fiber length shows 

had a P-Value (0.027) at means, making it significant and with a percentage contribution of 49.37%. Generally, the 

geometry (length) of the fiber has a strong contribution to the water absorption properties. Figure 8 (a, b, and c) 

shows the effect of the interaction of these factors on the mean water absorption. 
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Figure 8a: Interaction effect of cellulosic fiber (PALF) volume (%) with synthetic fiber (glass fiber) volume (%) on the 

percentage water absorption of PxGyEz 
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Figure 8b: Interaction Effect of cellulosic fiber (PALF) volume (%) with fiber length (mm) on the percentage water 

absorption PxGyEz 
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Figure 8c: Interaction effect of synthetic fiber (glass fiber) volume (%) with fiber length (mm) on the percentage water 

absorption of PxGyEz 

 

In Figure 8a, the high content of both the cellulose fiber and the glass fiber is an interaction that leads to high water 

absorption. This may not be disconnected from the fiber-to-fiber interaction at high compositions due to the 

increased volume of fibers in the matrix. Also, the water absorption of the hybrid reinforced composite is high at 

low cellulose and high synthetic fibers content. This is due to the lower diameter of the glass fiber as compared with 

the cellulosic fiber leading to a higher number of glass fiber strands at equal percentage composition by volume. The 

more the number of fiber strands, the increase in the possibility of water movement within the matrix through the 

fiber/matrix bonding surface. Figure 8(b and c) reinforces the strong effect of fiber length on the water absorption 
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properties. Long fiber will lead to fiber-to-fiber interactions and this will also lead to easy movement of moisture 

through the matrix and fiber adhesion interface, transferring from one fiber to another until the moisture is absorbed 

to saturation. The high-water absorption of the composite at low fiber length and low cellulose fiber loading 

reinforces the understanding that shorter lengths result in a higher number of fibers in the composite, at various fiber 

loading and increased the possibility of fiber-to-fiber interaction. It also explains why the water absorption of the 

composite material is high at high synthetic fiber content and short fiber length.  

 

3.2 Estimating the Optimal Water Absorption  

 
From the best combination of control factors which is the optimal settings of PxGyEz which is x=15, y=15, and z=20, 

an optimal water absorption property for the cellulosic fiber-reinforced P15G15E20 can be predicted using Equation 

5expression; 

𝑊𝑜𝑝𝑡 = 𝑊𝑚 + ∑ [(𝑊𝑖𝑘)𝑚𝑎𝑥 − 𝑊𝑚]𝑘𝑛
𝑘=1     (5) 

 

Where: 𝑊𝑚 = 3.6388% is the overall mean of the water absorption obtained from Table 3; 𝑊𝑖𝑘𝑚𝑎𝑥 = 3.140%, 

2.350%, and 2.067% are the optimum (lowest) water absorption at level i of factor k which is obtained from the 

response table and 𝑘𝑛 is the number of variable parameters (factors) considered.  

Therefore, the optimal water absorption of the cellulosic fiber-reinforced polymer composite can be calculated as:  

 

𝑊𝑜𝑝𝑡 = 3.6388 + (3.140 − 3.6388) + ( 2.350 − 3.6388) + (2.067 − 3.6388) 

𝑊𝑜𝑝𝑡 = 0.279% 

 

Therefore, the optimum water absorption is 0.279% which implies the lowest possible water absorption of the 

cellulosic hybrid fiber reinforced epoxy composite. The confidence interval for the prediction could be obtained 

from Equation 6.  

𝐶. 𝐼 = √𝐹𝛼(1, 𝐹𝑒)𝑉𝑒 [
1

𝑇
+

1

𝑅
]     (6) 

 

Where; C. I = Confidence interval;Fα(1, Fe) = F ratio;α = Risk; Fe = Error degree of freedom; Fα(1, Fe) =
F0.05(1,2 ) = 18.51 (tabulated), Ve = Error Variance(obtained from the Anova table) = 0.64;  𝑅 =
number of samples for confirmation 

𝑇 =
𝑁

1+[𝑇𝑜𝑡𝑎𝑙 𝐷𝑂𝐹 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 𝑓𝑎𝑐𝑡𝑜𝑟𝑠]
    (7) 

 

N = number of runs × replication = 27. Therefore 𝑇 = 3.85 and Confidence interval = 2.65% 

 

3.3 Confirmation test 

 
A confirmation test was carried out on the optimized composite to verify the reliability of the predicted optimum 

water absorption of the composite P15G15E20. The optimum combination of pineapple leaf fiber at 15% volume 

content, glass fiber at 15% volume content, and fiber length at 20mm were use used for the development of the 

composite, and Table 7 presents the percentage water absorption and signal to noise ratio to be 0.2667% and -

11.97dB was observed respectively.  

 
Table 7: Prediction confirmation test (Water absorption) 

 

 Water Absorption 
Average Water Absorption 

(%) 
SN Ratio (dB) 

S/N 
Trial Number 

1 2 3 

1 0.289 0.311 0.200 0.2667 -11.97 

 

From the confirmatory test as presented in Table 7, the water absorption lies within the confidence interval. 

 

3.4 Regression Analysis 
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The water absorption of the cellulosic fiber hybrid reinforced composite PxGyEz, with respect to the factors 

considered was modeled using the Minitab®2019 package. Table 8 and Table 9 presents the regression models for 

the mean and S/N ratio respectively. 

 
Table 8: Regression analysis model Mean Water Absorption 

 

Predictor Coef SE Coef T P 

Constant 72.1630 11.7724 6.1298 0.09895 

PALF Content (%); x -5.3894 0.9044 -5.9588 0.0270 

Glass Fiber Content (%); y -0.6053 0.4419 -1.3699 0.3042 

Fiber Length (mm); z -1.8678 0.3786 -4.9335 0.0387 

x*y 0.1400 0.0298 4.6928 0.0425 

x*z 0.1770 0.0298 5.9344 0.0272 

y*z -0.0861 0.0298 -2.8881 0.1019 

Multiple R = 98.28% R Square = 96.59% 

 
Table 9: Regression analysis model for water absorption SN ratio 

 

Predictor Coef SE Coef T P 

Constant -78.0707 41.4218 -1.8848 0.2001 

PALF Content (%); x 10.0299 3.1823 3.1518 0.0876 

Glass Fiber Content (%); y -1.5248 1.5547 -0.9808 0.4301 

Fiber Length (mm); z 0.0619 1.3321 0.0465 0.9671 

x*y -0.3578 0.1049 -3.4097 0.0763 

x*z -0.2839 0.1049 -2.7055 0.1138 

y*z 0.3500 0.1049 3.3351 0.0794 

Multiple R = 95.6 % R Square = 91.4%  

 

Mean Water Absorption (%) = 72.163 - 5.389 x - 0.605 y - 1.868 z + 0.14 x*y + 0.177 x z - 0.0862 y z  (8) 

 

Water Absorption S/N ratio (dB) = -78.0707 + 10.3 x - 1.53 y + 0.0619 z - 0.358 x*y - 0.284 x*z + 0.350 y*z (9) 

 

Mathematical models for the water absorption prediction of the material at any combination of the development 

factors are presented in Equation 8 and Equation 9. An R-Square value of 96.59% for the mean percentage water 

absorption and 91.4% for the S/N ratio indicates the high level of reliability of prediction using the developed 

mathematical models. This is further illustrated by a comparison between the simulated (predicted) percentage water 

absorption using the mathematical models and the experimented water absorption in Figure 9a and Figure 9b 

respectively. 
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Figure 9a: Modelled and experimental plot of mean water absorption of PxGyEz hybrid composite 
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Figure 9b: Modelled and experimental plot of SN water absorption of PxGyEz hybrid composite 

 

The water absorption property of the optimized cellulosic fiber/glass fiber hybrid epoxy composite is compared with 

other cellulosic fibers in Figure 10. The optimization has proved successful in reducing the water absorption 

properties as compared with the others. The references of the cellulosic fiber study are presented in Table10. 
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Figure 10: Water absorption properties of different cellulosic fiber/glass fiber reinforced hybrid composites 

 
Table 10: Compared studies of cellulosic fiber/ glass fiber hybrid composites 

 

Fiber Reference 

Oil Palm/Glass fiber Aabdul et al. (2009) 

Bamboo/Glass fiber Kushwaha et al. (2010) 

Palmyra/Glass fiber Velmurugan et al. (2007) 

Coir/Glass fiber Bhagat et al. (2014) 

Sisal/Glass fiber Meenakshi et al. (2019) 

Flax/Glass fiber Meenakshi et al. (2019) 

Sugar Palm Yarn/Glass fiber Nurazzi et al. (2018) 

PALF (M)/Glass fiber Mital et al. (2018) 

Where PALF (M) indicates a study on the water absorption property of PALF without optimization. 

 

 

4.0 CONCLUSION 

 
In conclusion, in the optimization of the water absorption property of PxGyEz, a cellulosic fiber hybrid reinforced 

polymer composite, using the Taguchi robust design of experiment, the following deductions were made: 

− A cellulosic fiber reinforced Epoxy hybrid composite PxGyEz was developed, characterized, and optimized 

for low water absorption properties. 

− The water absorption of the composite P15G15E20 developed with the optimum composition of 15% PALF, 

15% Glass fiber, and 20mm fiber length was 0.2667%.  

− Cellulosic fibers when surface-treated have a lower contribution of 0.48% than the ceramic glass fiber with 

an 18.06% contribution to the water absorption properties of PxGyEz developed hybrid composites. 

− The fiber geometry (fiber length) was found to be very significant (with P-Value<0.05) in contributing to 

the water absorption property of the developed composite.   

− Mathematical models were developed which were reliable with R>90 in the prediction of the water 

absorption properties of the hybrid composite developed. 
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