
Saparin N.A., Wahid M.A., Othman N.
Jurnal Mekanikal, June 2025, 48: 41-47

Page 41

 DOI 10.11113/jm.v48.523

RAPID RANDOM TREE AND DUBINS PATH ALGORITHM
FOR DRONE OBSTACLE AVOIDANCE

Nur Aliah Saparin, Mastura Ab Wahid*, Norazila Othman

Faculty of Mechanical Engineering, Faculty of Engineering, Universiti
Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

*Corresponding email: masturawahid@utm.my

Article history
Received

15th August 2024
Revised

16th December 2024
Accepted

10th February 2025
Published

20th June 2025
ABSTRACT

Unmanned aerial vehicles (UAVs) have been commonly used for domestic and military
surveillance. Path planning algorithms are one of the many tools that can be used to
control UAVs to make the flight autonomous and decrease the involvement of human
pilots. The purpose of this study is to develop and implement path planning algorithms
to enhance the navigation capabilities of drones in complex environments. Rapidly-
exploring Random Tree (RRT) is one of the algorithms that uses sampling based methods
to find possible flight paths in highly-dimension space. This research presents the
simulation of the algorithm testing in various maps with randomly placed obstacles in
MATLAB software to see whether the algorithm managed to manoeuvre around the
obstacle successfully with minimum collisions. To further refine the generated path,
Dubins path smoothing techniques are implemented in the simulation, to ensure a
smoother and more feasible trajectories for drone navigation. The path generated is
observed through the result shown in the simulation in both 2D view and 3D view for 3
different random cases. To summarize, the application of Dubins path smoothing
significantly improves the efficiency of the path-planning algorithm and reduces the time
to complete the obstacle navigation by 10-27% depending on the complexity of the map.
The smoothed paths are more direct, involve fewer abrupt turns, and consistently reduce
the time to reach the goal across different maps.

Keywords: RRT algorithm, Dubin paths, Obstacle Avoidance, MATLAB.

© 2025 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

Unmanned Aerial Vehicles (UAVs), commonly known as drones, operate without onboard
human pilots, controlled remotely or autonomously by computers. UAVs are widely used
for repetitive, complex, or dangerous tasks, finding applications in both military and
civilian sectors such as payload delivery, traffic monitoring, surveillance, aerial surveys,
search and rescue, agriculture, and corporate marketing. The effectiveness of UAVs in
these roles depends on feasible and optimal trajectory planning, as they must dynamically
interact with other objects during flight [1-9]. Current UAVs are designed to increase
autonomy and flight stability to handle diverse tasks. UAVs are classified into single-rotor,
multi-rotor, fixed-wing, and hybrid types, each with distinct advantages and limitations.

In scenarios where the spaces will be shared with other vehicles, machinery, humans,
or objects in movement, the UAV to be equipped with new tools or systems to avoid those
risks. The goal is to design and implement a reliable algorithm that can detect and maneuver
around obstacles while minimizing the risk of collisions. These risks explain why
researchers create best possible path-planning method and test it in simulations similar to

Saparin N.A., Wahid M.A., Othman N.
Jurnal Mekanikal, June 2025, 48: 41-47

Page 42

 DOI 10.11113/jm.v48.523

real-life environments. Through extensive simulations, the researchers will analyze the
performance of different algorithms to see whether they can successfully maneuver the
drone through various obstacles. Ultimately, these findings aim to advance UAV
technology while enhancing drones’ safety and reliability in practical applications.

Path planning for UAVs involves considerations such as stealth to minimize
detection, physical feasibility regarding path distance and leg length, mission performance
requirements like maximum turning angles and flying height, and real-time implementation
for efficiency in changing environments. There are different path-planning methods that
can be explored to aid obstacle avoidance as shown in Table 1. These methods are used for
UAVs that need to replan paths to adapt to unforeseen circumstances [7-9].

Table 1: Comparison of algorithm

Algorithm Advantages Disadvantages

Dijkstra

Find the shortest path High computational cost
Simple and easy to
implement

Explore unnecessarily in large
areas

Works with weighted graph

A*

Efficient (faster than
Dijkstra)

Performance depends on the
Heuristic quality

Find the shortest path Consume lots of memory
Flexible

D*

Designed for dynamic
environments More complex to implement

Efficient replanning Initial computation can be
expensive

Adapt to changes in real-time

RRT

Suitable for high-
dimensional spaces

Does not guarantee the shortest
path

Probabilistic completeness Randomness
Efficient (in exploring large

spaces)
Sensitive to the tuning

parameters

These characteristics make each algorithm suitable for different problems and

environments depending on the applications’ specific requirements and constraints. After
careful consideration, the RRT algorithm will be used for the simulation to work in high
dimensional spaces and will not require high computational cost.

Path smoothing techniques are important in various applications including robotics,
autonomous vehicles and computer graphics, to create feasible and efficient vehicle path.
The main goal of path smoothing techniques is to ensure that the paths are smooth and to
reduce abrupt changes in the direction or speed which could lead to inefficient or unsafe
maneuvers. Various techniques have been developed for path smoothing, and Dubins paths
are particularly notable for their simplicity and effectiveness in environments with
constraints on the curvature of the path. Even though there are downsides to the Dubins
paths, such as a lack of flexibility for complex motion in comparison to other smoothing
techniques like Bezier curves, B-splines and others, considering the current constraint of
the problem is only on obstacle avoidance with constant speed, the Dubins path is choosen.
This research uses different scenarios to test the performance of the RRT with Dubins path
as compared to RRT algorithm [10-14]. Study in [11] perform Dubins path oriented RRT*
algorithm which focuses on the flight and the minimum radius of rotation. It was found that
the algorithm improves the path length by 14.87% and computing time by 82.36%. In this
study, the Dubins path is applied to RRT and the map is generated randomly to see the
effectiveness of the implementation of the Dubins path.

Saparin N.A., Wahid M.A., Othman N.
Jurnal Mekanikal, June 2025, 48: 41-47

Page 43

 DOI 10.11113/jm.v48.523

2.0 METHODOLOGY

The methodology used in of the project consisted of several elements. First, construct and
build the environment and obstacles for the simulation. Next, the RRT algorithm will be
implemented in the MATLAB software. Incorporate Dubins path smoothing to ensure the
path is smoother and feasible for drone maneuvering. The simulation is fully tested in
MATLAB software.

2.1 Modelling and Building the Simulation Environment
A 3D occupancy map is created using the MATLAB’s ‘occupancyMap3D’ object. The map
has the dimensions of 200*200 units and ten randomly placed obstacles is generated. Each
obstacle is defined randomly, generating its width, length and height within the specified
ranges. The position will also be randomly placed but still within the map boundaries. Each
obstacle will be checked for intersections with existing obstacles by verifying if any points
within the new obstacle are already occupied on the map. The code run until non-
intersection obstacle was found and finally, the ground plane at z = 0 was filled to create a
base layer, and the map was displayed using the ‘show’ function. This simulation will be
tested various map displays, as shown in Figure 1.

Figure 1: Example of 3D occupancy map

2.2 RRT Algorithm
Rapidly Exploring Random Trees (RRT) is an algorithm used in robotics and motion
planning to explore and navigate high-dimensional configuration spaces efficiently. The
algorithm iteratively builds a tree by randomly sampling points in the configuration space
and connecting them to the nearest existing node, ensuring collision-free paths. Starting
from an initial configuration, a random configuration is sampled, and a new node is created
by extending from the nearest node towards the sampled point within a distance threshold.
If the path is collision-free, the new node is added to the tree. This process continues until
a specified number of iterations or a termination condition is met, resulting in a connected
roadmap of the configuration space. The algorithm can be adapted to terminate when the
closest distance to the goal point is reached, using a while loop instead of a for loop.
Detailed information on the algorithm of the RRT and Dubins method can be found in [11-
13]. Table 2 shows the algorithm used for the testing.

Saparin N.A., Wahid M.A., Othman N.
Jurnal Mekanikal, June 2025, 48: 41-47

Page 44

 DOI 10.11113/jm.v48.523

Table 2: RRT algorithm [15]
Generate_RRT(𝒙𝒙𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊,𝑲𝑲,𝚫𝚫𝒊𝒊)

1 𝜏𝜏. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖);
2 for k=1 to K do
3 𝑥𝑥𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟 ⟵ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆();
4 𝑥𝑥𝑖𝑖𝑛𝑛𝑟𝑟𝑟𝑟 ⟵

𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆_𝑅𝑅𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑅𝑅𝑅𝑅(𝑥𝑥𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟 , 𝜏𝜏);

5 𝑢𝑢 ⟵ SELECT_INPUT(𝑥𝑥𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟 , 𝑥𝑥𝑖𝑖𝑛𝑛𝑟𝑟𝑟𝑟);

6 𝑥𝑥_𝑖𝑖𝑛𝑛𝑛𝑛 ⟵
𝑅𝑅𝑆𝑆𝑁𝑁_𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆(𝑥𝑥𝑖𝑖𝑛𝑛𝑟𝑟𝑟𝑟 ,𝑢𝑢,Δ𝑖𝑖);

7 𝜏𝜏. 𝑎𝑎𝑎𝑎𝑎𝑎_𝑣𝑣𝑛𝑛𝑣𝑣𝑖𝑖𝑛𝑛𝑥𝑥(𝑥𝑥𝑖𝑖𝑛𝑛𝑛𝑛);

8 𝜏𝜏. 𝑎𝑎𝑎𝑎𝑎𝑎_𝑣𝑣𝑛𝑛𝑣𝑣𝑖𝑖𝑛𝑛𝑥𝑥 (𝑥𝑥𝑖𝑖𝑛𝑛𝑟𝑟𝑟𝑟 , 𝑥𝑥𝑖𝑖𝑛𝑛𝑛𝑛 ,𝑢𝑢);

9 𝑅𝑅𝑛𝑛𝑖𝑖𝑢𝑢𝑣𝑣𝑖𝑖 𝜏𝜏

The xinit indicates an initial position of a robot in the Cartesian coordinate. K indicates

the number of vertices of a tree, and the algorithm iterates K times before termination. This
loop termination condition can be substituted by checking the closest distance from the tree
to the goal point. To implement this, use ‘while loop’ instead of ‘for loop’. Additionally, it
can make the loop iterate at least K times before termination. Δt indicates the time interval
and τ represents a tree structure containing nodes sampled from configuration space and u
indicates the control input. 𝐶𝐶,𝐶𝐶𝑖𝑖𝑟𝑟𝑛𝑛𝑛𝑛 and 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 indicates configuration space, free
configuration space and obstructed configuration space, respectively.Where 𝐶𝐶 is given in
the 2D-map.

2.3 Simulation
The simulation demonstrates UAV navigation through a 3D environment with obstacles. A
pre-defined 3D occupancy map is used, with unknown spaces considered navigable. The
UAV's starting and goal poses are defined, and an ‘ExamplehelperUAVStateSpace’ object
constrains the UAV's roll angle, airspeed, flight path angle, and workspace bounds. A state
validator ensures state validity within the map.

The RRT path planner, configured with a 50-unit maximum connection distance, 400
iterations, and a goal reach threshold of 5 units, attempts to find a feasible path from the
start to the goal. Successful paths are stored in 'pthObj' and 'solnInfo'. The code visualizes
the search tree, interpolates the planned path for smoothness, and simulates the UAV's
trajectory (red) against the planned path (green).

To enhance realism, the initially planned path is smoothed using a Dubins path
smoothing function, reducing sharp turns and providing a continuous trajectory. This is
done once the RRT tree and vertex is found. The RRT will connect the vertex via a line,
the Dubins path will be called to smooth the path. The final plot compares the smoothed
reference path (green) with the simulated flight path (red), clearly representing the UAV's
navigation.

3.0 RESULTS AND DISCUSSION

The simulation results are visualized using a 3D occupancy map where the UAV navigates
through a complex environment populated with randomly placed obstacles. The UAV's
path planning and trajectory are demonstrated using the Rapidly Exploring Random Trees
(RRT) algorithm, followed by a Dubins path smoothing function for a more realistic flight
path. The simulation is run multiple times with different maps and randomly placed
obstacles. The simulated results are displayed in the 2D and 3D simulation map as
shown in Figure 2. The figures illustrate both the planned (green) and the simulated (red)
flight paths, allowing for an evaluation of the UAV's performance in navigating the
environment.

Saparin N.A., Wahid M.A., Othman N.
Jurnal Mekanikal, June 2025, 48: 41-47

Page 45

 DOI 10.11113/jm.v48.523

Map 1 Map 2

 Map 3
Figure 2: 3D view of RRT algorithm for 3 random cases

.
Figure 3: 2D view of the generated path

Figure 4: Dubins path smoothing

Figure 2 shows a 3D environment with various obstacles depicted as blocks of
different heights. The red line represents the path planned by the UAV starting from the
start pose and moving towards the goal pose while avoiding obstacles. The planned path
appears to navigate clearly around the obstacles maintaining a safe distance from them. The
blue line represents the RRT’s exploration, forming a search tree that obtains the planned

Saparin N.A., Wahid M.A., Othman N.
Jurnal Mekanikal, June 2025, 48: 41-47

Page 46

 DOI 10.11113/jm.v48.523

path. The RRT algorithm is designed to efficiently explore high-dimensional spaces by
randomly sampling points in the map and connecting them to the nearest existing node in
the tree, gradually expanding the tree until the goal is reached or the maximum number of
iterations is achieved.

In this scenario, the search tree expands through the 3D occupancy map, navigating
around the obstacles represented by the 3D blocks. The resulting path avoids collisions with
these obstacles, showing the RRT’s effectiveness in finding a path within a complex
environment. However, the path can be rough due to the nature of RRT’s random sampling
and connection process.

Figure 3 provides a 2D top view of the planned path. This view helps better
understanding the path’s trajectory and its relation to the obstacles. In this view, the path
weaves through the obstacles, following the shortest feasible route from start pose to the
goal pose.

Meanwhile, Figure 4 shows the path after applying Dubins smoothing. Dubins paths
are used for smoothing trajectories in environments where the drone has constraints on its
turning radius, providing a more realistic and feasible path. The sharp turns and rough
section from the original RRT path are replaced with smoother curves. This results in a
more practical and efficient route for the drone to follow. It also reduced the likelihood of
abrupt maneuvers that could be difficult for the drone to execute.

Table 3: Comparison of time taken to reach the goal before and after Dubins smoothing

Map Time to reach the goal
before Dubins smoothing

(s)

Time to reach goal after
Dubins smoothing (s)

Flight Time
Improvement

%
1 54.544 40.003 27
2 51.462 46.454 10
3 44.687 39.092 13

4.0 CONCLUSION

The application of the RRT algorithm for the simulation shows its effectiveness in
navigating complex 3D environments by efficiently exploring space and generating
feasible paths, as shown by the search tree and planned path. The 2D top view provides a
clearer view of the path’s trajectory relative to the obstacles and highlights areas for
potential improvement. The application of Dubins smoothing transforms the initially rough
path into a smoother and more practical route for the drone, ensuring a feasible path for
real-world navigation. This process provides a foundation for understanding the RRT
algorithm’s function in initial path planning and the importance of post-processing for
optimal and realistic path execution. Three random mappings were generated to test the
RRT and Dubins Path algorithm. It was found that the addition of Dubins path on the path
reduces the time to navigate from 10-27% depending on the complexity of the map.

CONFLICT OF INTEREST

The author declares that there is no conflict of interest regarding the publication of this
paper.

Saparin N.A., Wahid M.A., Othman N.
Jurnal Mekanikal, June 2025, 48: 41-47

Page 47

 DOI 10.11113/jm.v48.523

ACKNOWLEDGEMENT

The author would like to thank and acknowledge Universiti Teknologi Malaysia (UTM)
and UTM Aerolab for the facilities given for the research.

REFERENCES

[1] Mahmoud, M. S., Oyedeji, M. O., & Xia, Y. (2021). Path planning in autonomous aerial vehicles.

In Advanced distributed consensus for multiagent systems (pp. 331–362).
Elsevier. https://doi.org/10.1016/b978-0-12-821186-1.00018-0

[2] Radmanesh, M., Kumar, M., Guentert, P. H., & Sarim, M. (2018). Overview of path-planning and obstacle
avoidance algorithms for UAVs: A comparative study. Unmanned Systems, 6(2), 95–
118. https://doi.org/10.1142/S2301385018400022

[3] Dhulkefl, E. J., & Durdu, A. (2019). Path planning algorithms for unmanned aerial vehicles. International
Journal of Trend in Scientific Research and Development, 3(4), 359–
362. https://doi.org/10.31142/ijtsrd23696

[4] Gugan, G., & Haque, A. (2023). Path planning for autonomous drones: Challenges and future
directions. Drones, 7(3). https://doi.org/10.3390/drones7030169

[5] Karur, K., Sharma, N., Dharmatti, C., & Siegel, J. E. (2021). A survey of path planning algorithms for
mobile robots. Vehicles, 3(3), 448–468. https://doi.org/10.3390/vehicles3030027

[6] Tony, L. A., Ghose, D., & Chakravarthy, A. (2018). Precision UAV collision avoidance using
computationally efficient avoidance maps. 2018 AIAA Guidance, Navigation, and Control
Conference. https://doi.org/10.2514/6.2018-0875

[7] Zhang, R., et al. (2024). Intelligent path planning by an improved RRT algorithm with dual grid
map. Alexandria Engineering Journal, 88, 91–104. https://doi.org/10.1016/j.aej.2023.12.044

[8] Jeauneau, V., Jouanneau, L., & Kotenkoff, A. (2018). Path planner methods for UAVs in real
environment. IFAC-PapersOnLine, 51(22), 292–297. https://doi.org/10.1016/j.ifacol.2018.11.557

[9] Vasudevan, V. (2021). Obstacle detection and avoidance algorithm in drones: Airsim simulation with
HIL [Doctoral dissertation, California State University, Northridge].

[10] Xu, Z., et al. (2019). A study on path planning algorithms of UAV collision avoidance. Journal of
Northwestern Polytechnical University, 37(1), 100–106. https://doi.org/10.1051/jnwpu/20193710100

[11] Yang, Y., Leeghim, H., & Kim, D. (2022). Dubins path-oriented rapidly exploring random tree* for three-
dimensional path planning of unmanned aerial vehicles. Electronics, 11(15),
2338. https://doi.org/10.3390/electronics11152338

[12] Ravankar, A., et al. (2018). Path smoothing techniques in robot navigation: State-of-the-art, current and
future challenges. Sensors, 18(9). https://doi.org/10.3390/s18093170

[13] Shkel, A. M., & Lumelsky, V. (2001). Classification of the Dubins set. Robotics and Autonomous Systems,
34(4), 179–202. https://doi.org/10.1016/s0921-8890(00)00127-5

[14] Oh, Y., Cho, K., & Oh, S. (2018). Robust multi-objective path planning for flying robots under wind
disturbance. 2018 15th International Conference on Ubiquitous Robots (UR) (pp. 670–
675). https://doi.org/10.1109/URAI.2018.8441822

[15] LaValle, S. (1998). Rapidly-exploring random trees: A new tool for path planning [Research Report 9811].

https://doi.org/10.1016/b978-0-12-821186-1.00018-0
https://doi.org/10.1142/S2301385018400022
https://doi.org/10.31142/ijtsrd23696
https://doi.org/10.3390/drones7030169
https://doi.org/10.3390/vehicles3030027
https://doi.org/10.2514/6.2018-0875
https://doi.org/10.1016/j.aej.2023.12.044
https://doi.org/10.1016/j.ifacol.2018.11.557
https://doi.org/10.1051/jnwpu/20193710100
https://doi.org/10.3390/electronics11152338
https://doi.org/10.3390/s18093170
https://doi.org/10.1016/s0921-8890(00)00127-5
https://doi.org/10.1109/URAI.2018.8441822

	ABSTRACT
	3.0 RESULTS AND DISCUSSION
	4.0 CONCLUSION
	ACKNOWLEDGEMENT

