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ABSTRACT

Dealing with children with Autism Spectrum Disorder (ASD) is challenging due to their
sensory reactions, leading to behavioral issues, self-injury, and safety concerns. Many
individuals with ASD also exhibit atypical sensory processing, increasing anxiety and
difficulty in daily life. Existing diagnostic tools like the Autism Diagnostic Observation
Schedule (ADOS) are subjective, time-consuming, and heavily dependent on trained
professionals. This work is presented as a pilot feasibility study, based on EEG
spectrograms, to establish a baseline for future large-scale investigations. The EEG data
obtained from King Abdulaziz University Hospital, from 16 participants (12 ASD, 4
neurotypical) were preprocessed to remove noise, segmented into 3.5-second windows,
and transformed into time-frequency spectrogram images using the Short-Time Fourier
Transform (STFT). These spectrograms were classified using both machine learning (ML)
models, including Support Vector Machines (SVM), Decision Trees, and Ensemble
Methods, and deep learning (DL) Convolutional Neural Networks (CNNs). While ML
models achieved moderate accuracy, with Subspace KNN performing best at 90.27%,
CNN architectures significantly outperformed them, Model 4 achieving accuracy of
99.89%, demonstrating stability. Smaller batch sizes (32—64) optimized performance,
whereas larger batches (128) degraded accuracy by up to 22%. The results highlight the
transformative potential of deep learning in automating ASD diagnosis, offering a rapid,
and clinically alternative to traditional methods.

Keywords: Autism Spectrum Disorder, EEG, Machine Learning, Convolutional Neural
Network, Deep Learning
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1.0 INTRODUCTION

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that affects how
individuals communicate, interact socially, and process sensory information. It is called a
spectrum disorder because it presents differently in each person, some individuals may have
mild social difficulties, while others may experience significant challenges in
communication and daily functioning [1]. Key characteristics of ASD include difficulty in
social interactions, repetitive behaviors, and atypical sensory responses, such as heightened
sensitivity to sounds, lights, or textures [2]. Over the years, ASD has become more widely
recognized. The World Health Organization (WHO) estimates that ASD affects around
0.76% of the global population [3], though this data represents only 16% of the world’s
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child population, suggesting that the actual prevalence may be higher. Meanwhile, the
Centers for Disease Control and Prevention (CDC) reports that approximately 1.68% of 8-
year-old children in the United States (equivalent to 1 in 59) are diagnosed with ASD [4].

Similarly, in Malaysia, the number of children diagnosed with autism has surged by
663% between 2013 and 2023. According to data from the Department of Social Welfare
(JKM) [5], the number of registered children with ASD increased from 6,991 in 2013 to
53,323 in 2023. This trend was highlighted by Nancy Shukri, Minister of Women, Family
and Community Development, in a written response to parliament on July 3, 2023 as shown
in Table 1. The steady rise in ASD cases highlights the need for more efficient and objective
diagnostic tools to support early intervention and treatment. In response to that, the state
government and private sector are exploring ways to expand autism centers and improve
ASD-related services.

Table 1: Annual statistics of children diagnosed with ASD in Malaysia [5].

2013 6,991
2014 8,789
2015 10,708
2016 12,976
2017 15,838
2018 18,754
2019 23,634
2020 27,732
2021 32,471
2022 40,963
2023 53,323

Researchers have found differences in brain function and structure among individuals with
ASD, particularly in areas responsible for social skills, communication, and sensory
processing [6]. Diagnosing ASD remains a complex and time-consuming process, often
relying on behavioral assessments like the Autism Diagnostic Observation Schedule
(ADOS) and the Autism Diagnostic Interview-Revised (ADI-R) [7]. These evaluations
require trained specialists, making them expensive and less accessible, especially inregions
with limited healthcare resources.

Because of these challenges, researchers are exploring new ways to make ASD
diagnosis more efficient and objective. Different approaches have been explored to enhance
the accuracy and efficiency of ASD diagnosis, ranging from neurophysiological monitoring
to artificial intelligence (Al) driven behavioral analysis. Techniques such as functional
Magnetic Resonance Imaging (fMRI), and functional near-infrared spectroscopy (FNIRS)
have been used to assess brain connectivity in individuals with ASD. However, these
methods are limited by high costs, restricted accessibility, and the need for specialized
equipment [8,9]. In contrast, Electroencephalography (EEG) has been a suitable tool due
to its high temporal resolution, ease of use, non-invasiveness, affordability, and widespread
clinical availability [10]. EEG captures brain activity through scalp-attached electrodes,
recording electrical impulses across different frequency bands. These signals, often
complex and multi-channel, are traditionally interpreted by neurologists through visual
inspection, a process that is prone to human error due to the lack of standardized assessment
criteria [11,12]. However, EEG signals are complex and typically require expert
interpretation. This is where artificial intelligence can play a transformative role. Several
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types of machine learning models have been applied in this field, each with its own
strengths.

Tree-based models, such as Fine Tree, Boosted Trees, and Bagged Trees, are commonly
used because they can handle complex data while remaining easy to interpret. Boosted
Trees, in particular, have shown high accuracy in classifying ASD, especially when
combined with techniques that scale and refine features for better results [13,14]. One
challenge in ASD diagnosis is class imbalance, where the number of ASD cases in a dataset
may be much smaller than non-ASD cases. RUSBoosted Trees, which combine random
under-sampling with boosting, help address this issue by balancing the data and improving
classification performance[ 15]. Subspace Discriminant and Subspace KNN make it easier
to analyze complex EEG data, improving efficiency [16]. Meanwhile, Support Vector
Machines (SVMs), including Quadratic, Cubic, and Gaussian versions, are great at
handling non-linear patterns, making them reliable for detecting ASD from EEG and
behavioral data[17].

One of the biggest advantages of deep learning (DL) models is that they can
automatically learn patterns from raw data [ 18] without needing experts to manually extract
features. Unlike traditional machine learning (ML) methods, which rely on predefined
features selected by specialists, DL models can analyze complex EEG signals on their own,
often leading to higher accuracy. However, a major challenge with DL is its "black-box"
nature, meaning that it is difficult to understand exactly how the model makes its decisions.

In one study [19], researchers used a Convolutional Neural Network (CNN) to analyze
the power spectrum of EEG signals and detect ASD-related brain activity. Their three-layer
CNN model achieved an accuracy of 90%, showing the potential of deep learning in ASD
classification. While DL models can work directly with raw EEG data, some researchers
choose to first extract key features before training. This helps reduce computation time and
improves the model’s ability to focus on the most important aspects of EEG signals, leading
to more efficient and reliable results.

EEG signals constantly change over time, making it difficult to extract stable features
for diagnosing ASD. Traditional methods, like Multiscale Entropy (MSE), have struggled
to distinguish ASD-related brain activity from typical EEG patterns due to inconsistencies
in scale extraction and sensitivity to frequency changes [20]. Researchers have started using
time-frequency (T-F) spectrogram images to better capture the changing nature of EEG
signals. These images visually represent EEG activity in the T-F domain, where different
colors indicate energy variations across different frequencies over time [21]. This approach
helps highlight key patterns in EEG data that traditional methods might miss, improving
classification accuracy.

T-F spectrogram images have already been successfully used to classify neurological
disorders like Epilepsy and Sleep Stages [22], Alzheimer's Dementia [23], Seizure
Classification [24], and ASD [25].

2.0 METHODS

This study presents a machine learning, and deep learning-based framework for detecting
ASD using EEG data. The methodology follows a structured approach shown in the
following flowchart as Figure 1 illustrates the methodology for predicting ASD using EEG
data, machine learning, and deep learning. The process begins with raw EEG Data,
followed by Pre-Processing to remove noise and artifacts. The cleaned data undergoes
Feature Extraction to identify discriminative patterns, which are then fed into multiple
machine learning, and deep learning classifiers.
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Figure 1: Workflow for ASD prediction using EEG data, ML,and DL.

2.1 Experimental Framework

This study consists of several key stages, beginning with data collection and preprocessing
to remove noise and artifacts from raw EEG signals. The signals are then transformed into
spectrogram images, which are subsequently used for classification using both machine
learning (ML) and deep learning (DL) techniques. This process ensures that the EEG data
is optimized for pattern recognition and classification, for ASD detection.

To achieve this, the framework integrates both ML classifiers and Convolutional Neural
Networks (CNNs) for automatic feature extraction and classification. The analysis of these
two approaches provides insights into the most effective methodology for EEG-based ASD
detection.

2.2 Data Collection and Preprocessing

The EEG dataset used in this study was obtained from King Abdulaziz University Hospital.
The dataset contained EEG recordings from a total of sixteen participants, including twelve
individuals diagnosed with ASD and four neurotypical control participants. This small
dataset frames the present work as a pilot feasibility study. EEGrecordings were conducted
under controlled conditions to ensure the reliability of the data.
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The EEG signals were captured using a 16-channel EEG system as shown in Figure 2
with electrodes placed according to the 10-20 international system. A sampling frequency
of 256 Hz was used to ensure high-resolution recordings. The EEG data was collected under
resting-state EEG condition, where participants were asked to keep their eyes open and
closed.

Preprocessing was performed to clean the EEG signals and remove unwanted noise and
artifacts. Initially, the raw EEG signals were extracted, and converted into numerical arrays
for computational processing. A common average referencing technique was applied to
reduce background noise by averaging signals across all electrodes. Subsequently, a
bandpass filter (0.1-60 Hz) was used to retain only the frequency range relevant to
brainwave activity, while a notch filter at 60 Hz eliminated powerline interference. To
facilitate efficient analysis, the EEG signals were segmented into 3.5-second windows at a
sampling rate of 256 Hz. Following segmentation,

The dataset was splitinto training (6,796 spectrograms), validation (1,198),and test sets
(7,994) containing (5,009 ASD) and (2,985 neurotypical) spectrograms (class ratio 1.68:
1). The training set concluded 85% of the data, while the remaining 15% was allocated for
validation. To avoid the appearance of leakage, all spectrogram windows originating from
the same EEG recording session were placed entirely within a single data partition
(training, validation, and test). Because each participant contributed only one session,
participant-level leakage cannot be fully excluded and is addressed in the future work
section. All images were normalized to a pixel range of [0,1] by applying rescaling.
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Figure 2: Electrodes placement of autism data acquisition system

To assess the impact of batch size on training efficiency and model performance,
experiments were conducted with batch sizes of 32, 64, and 128 for the deep learning
models.
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The CNN models were trained with validation accuracy monitored throughout the
training process. After training, performance was evaluated on the test set using accuracy,
precision, recall, F1-score, AUC, and training time. Confusion matrices and ROC curves
were generated to further analyze model predictions.

2.3 Spectrogram Generation

To transform EEG signals into a format suitable for deep learning, the Short-Time Fourier
Transform (STFT) was applied to generate spectrogram images. Spectrograms provide a
time-frequency representation of EEG signals, across standard brain wave bands—delta
(0.5-4 Hz), theta (4-8 Hz), alpha (8—13 Hz), beta (13—30 Hz), and gamma (>30 Hz). This
transformation from raw time-domain EEG to spectrogram format enables the model to
visualize and learn patterns in power fluctuations across frequency bands over time,
allowing the detection of patterns associated with ASD. The process of spectrogram
generation involved several steps. First, a Hamming window function was applied to ensure
smooth transitions between overlapping signal segments. The STFT was then computed to
extract time-frequency features from the EEG signals. Finally, resulting spectrograms as
illustrated in Figure 3 where Figure 3a shows images from ASD group and Figure 3b shows
images from normal subjects., with a resolution of 128x128 pixels, which are suitable for
CNN-based classification. These spectrogram images serve as the primary input for the
machine learning, and deep learning models for automated feature extraction and
classification.
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Figure 3: EEG spectrograms. (a) autism group. (b) normal group.
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2.4 Feature Extraction for Machine Learning

For the machine learning approach, spectrogram images were transformed into structured
feature representations. Feature extraction was carried out using two primary techniques:
Local Ternary Patterns (LTP) and Spatial Pyramid Matching (SPM).

LTP was applied to spectrogram images to capture the textural properties of EEG
signals. This technique encodes spatial relationships between pixel intensities, enabling the
identification of patterns associated with ASD. To further enhance feature extraction, the
spectrogram images were divided into multiple subregions using SPM. Histograms of the
LTP-transformed images were computed for each subregion, ensuring that both global and
localized features were captured.

Following feature extraction, Principal Component Analysis (PCA) was applied to
reduce the dimensionality of feature vectors. PCA retained only the most informative
components, minimizing the risk of overfitting. These extracted feature vectors were then
used as inputs for machine learning classifiers.

2.5 Classification Approaches
Two classification approaches were used: machine learning models and deep learning
models. The machine learning approach involved training various classifiers using the
extracted feature vectors, while the deep learning approach utilized CNNs for automatic
feature extraction and classification.

For the machine learning approach, several supervised learning algorithms were tested,
shown in Table 2 including Support Vector Machines (SVM), Decision Trees (DT), K-
Nearest Neighbors (k-NN), and ensemble learning techniques such as Bagged and Boosted
Trees. These models were trained in MATLAB, and their performance was evaluated based
on accuracy, error rate, and computational efficiency.

Table 2: Machine learning models

Model Hyperparameters

Fine Tree Max splits: 300, Split criterion: Gini's diversity index, Surrogate

decision splits: Off

Boosted Trees
Bagged Trees

Subspace Discriminant
Subspace KNN
RUSBoosted Trees
Custom Tree
Quadratic SVM

Cubic SVM

Fine Gaussian SVM

Medium Gaussian SVM
Coarse Gaussian SVM

Ensemble method: Boosting, Max learners: 30, Learning rate: 0.1
Ensemble method: Bagging, Max splits: 25597, Leamer type:
Decision tree, Max learners: 30

Ensemble method: Subspace, Learner type: Discriminant, Max
learners: 30, Subspace dimension: 640

Ensemble method: Subspace, Learner type: Nearest neighbors, Max
learners: 30, Subspace dimension: 640

Ensemble method: RUSBoost, Learner type: Decision tree, Max
leamners: 30, Learning rate: 0.1, Max splits: 20

Max splits: 300, Split criterion: Gini's diversity index, Surrogate
decision splits: Off

Kemel function: Quadratic, Kernel scale: Automatic, Box constraint:
1, Multiclass coding: One-vs-One

Kernel function: Cubic, Kernelscale: Automatic, Box constraint: 1
Kemel function: Gaussian, Kernel scale: 8.9, Box constraint: 1
Kernel function: Gaussian, Kernel scale: 36, Box constraint: 1
Kernel function: Gaussian, Kernel scale: 140, Box constraint: 1

For the deep learning approach, Convolutional Neural Networks (CNNs) were
implemented to identify ASD directly from spectrogram images. As shown in Table 3,
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eight CNN architectures were developed to evaluate model complexity, regularization
techniques, and feature extraction capabilities.

Table 3: Deep leaming models

Model Architecture
Model 1 Three convolutional layers (32—64—128 filters, 3 X 3 kernels) with
ReLU activation and max- pooling (2x2)

Model 2 Basic CNN + Dropout (50%) after pooling layers to reduce overfitting

Model 3 Six convolutional layers (32X 256 filters) for hierarchical feature
learning

Model 4 Basic CNN + Batch Normalization after each convolution to stabilize
training

Model 5 ReLU replaced with LeakyReLU (¢=0.3) to prevent silent neurons

Model 6 E xpanded filters (64X 256) to enhance feature representation

Model 7 Basic CNN +real-time augmentation (rotation £15°, horizontal flip)

Model 8 Conv2D layers (32X 64 filters) K Reshapel LSTM (64 units) X D ense

The CNN models were trained using the Adam optimizer with a learning rate of 0.001. A
binary cross-entropy loss function was used, as it is well-suited for binary classification
tasks. To assess the impact of batch size on model performance, experiments were
conducted with batch sizes of 32, 64, and 128 over five epochs. Model evaluation was based
on accuracy, precision, recall, F1-score, AUC, and training time. The training process was
implemented using pycharm.

3.0 RESULTS AND DISCUSSION

This section presents the performance evaluation of both ML and DL models in classifying
ASD based on EEG spectrogram images. The results are analyzed in terms of accuracy,
training time, and computational efficiency, highlighting the strengths and weaknesses of
different models.

3.1 Machine Learning Results.
The classification performance of various machine learning models was evaluated to

determine the most effective approach. Table 4 summarizes the validation accuracy, error
rate, and training time for different ML models.

Table 4: Machine leaming performance metrics.

Model Accuracy (Validation) Error Rate Training Time
(Validation) (sec)

Fine Tree 86.47% 13.53% 281.53

Boosted Trees 87.80% 12.20% 503222

Bagged Trees 88.85% 11.15% 34479.0

Subspace Discriminant  85.21% 14.79% 2506.5

Subspace KNN 90.27% 9.73% 31454.0
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RUSBoosted Trees 83.39% 16.61% 6071.8

Custom Tree 87.21% 12.79% 9883.7

Quadratic SVM 86.02% 13.98% 28818.0
Cubic SVM 85.99% 14.01% 45243.0
Fine Gaussian SVM 50.63% 49.37% 42252.0
Medium Gaussian SVM  85.69% 14.31% 33063.0
Coarse Gaussian SVM  84.66% 15.34% 37472.0

The Subspace KNN model achieved the highest validation accuracy of 90.27% with a low
error rate of 9.73%. However, its training time of 31,454 seconds (8.73 hours) was
relatively high, making it computationally expensive.

Bagged Trees provided a strong balance between accuracy (88.85%) and training time
(9.58 hours, 34,479 seconds), making it an excellent choice for applications that demand
both high accuracy and reasonable computational efficiency.

The Fine Gaussian SVM performed the worst, with an accuracy of only 50.63%, making
it unsuitable for practical use. Despite this poor performance, it had a long training time of
11.73 hours (42,252 seconds), indicating inefficiency in both accuracy and computational
requirements.

On the other hand, RUSBoosted Trees offered moderate accuracy at 83.39%, but its
training time of 16.87 hours (60,718 seconds) made it one of the least efficient models in
terms of both accuracy and computational performance.

The relationship between training time and validation accuracy for the tested ML
models is illustrated in Figure 4. The dual-axis chart presents validation accuracy as blue
bars (left y-axis) and training time in hours as a red line (right y-axis), allowing a direct
visual comparison of model performance. Models like Subspace KNN and Bagged Trees
stand out with high accuracy bars, while RUSBoosted Trees and Fine Gaussian SVM are
notable for their long training time spikes in the red line. Conversely, Subspace
Discriminant shows a very low training time but also suffers from low accuracy.

Dual-Axis Chart: Accuracy and Training Time (hours) by Preset
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Figure 4: Machine learming accuracy and training time.
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3.2 Deep Learning Results.

CNN models were evaluated using different architectures and batch sizes to determine the
optimal configuration. Their performance was assessed based on accuracy, precision,
recall, F1-score, AUC, and training time. To ensure statistical presentation, 95% Wilson
confidence intervals (ClIs) were computed for each model [26]. The Wilson interval is
preferred over the standard Wald method, especially for high or low proportions, due to its
improved coverage properties and reduced bias near the boundaries [26]. The interval is
defined as shown in equation 1:

IS=S, CIS: 2n ' 2n 4n (1)

where p is the observed proportion (accuracy), n is the total number of test samples, k
is the correct predictions, and z is the z-score for the 95% confidence level (z = 1.96). This
interval provides a more reliable estimation of the model’s true accuracy, by correcting for
potential sampling variability.

As presented in Table 5, the best-performing model was Model 4 with a batch size of
32, achieving the highest accuracy (99.89%) and a Wilson interval [99.80, 99.95], Although
Model 4 (batch 32) achieved an apparent accuracy of 99.89 %, these values are preliminary

and likely optimistic given the sample size and the class ratio of 1.68 : 1 described in
Methods.

Table 5: Deep leaming performance Metrics.

Model Batch  Accuracy 95% CI Precision  Recall F1- AUC Training
Name Size (%) (Wilson) Score Time (s)
Modell 32 99.83 [99.72,99.90] 0.998 0.999 0998 0998 447
Modell 64 99.36 [99.16,99.51] 0.998 0.991 0994 0994 380
Modell 128 99.48 [99.30,99.62] 0.996 0996 0995 0995 567
Model2 32 99.79 [99.68,99.88] 0.998 0.998 0998 0999 414
Model2 64 99.69 [99.54,99.79] 0.998 0997 0997 0997 357

]

]

]

]

Model2 128  98.53 [98.25,98.78] 0.989 0987 0988 0.986 0641
Model3 32 88.61 [87.90,89.29] 0.998 0.819 0900 00983 428
Model3 64 81.84 [81.00,82.68] 0.998 0.712 0.830 0.817 400
Model3 128  77.19 [76.26,78.10] 0.998 0.637 0.777 0.772 584
Model4 32 99.89 [99.80,99.95] 0.998 0.999 0998 0.999 822
Model4 64 99.82 [99.71,99.90] 0.998 0.997 0997 0.997 800
Model4 128  99.62 [99.45,99.75] 0.996 0.995 0996 0.995 1001
Model5 32 99.78 [99.66,99.87] 0.997 0.994 0995 0.998 525
Model5 64 99.42 [99.23,99.57] 0.992 0988 0969 0.997 464
Model5 128  97.66 [97.31,97.97] 0.993 0986 0982 0.987 690
Model6 32 99.84 [99.72,99.90] 0.998 0.999 0998 0.999 1200
Model6 64 99.37 [99.16,99.51] 0.998 0.997 0998 0.998 970
Model6 128  98.71 [98.44,98.94] 0.995 0987 0986 0.987 2496
Model7 32 98.22 [97.97,98.40] 0.996 0.998 0993 0.997 1100
Model7 64 84.15 [83.33,84.93] 0.850 0.747 0.763 0.747 1034
Model7 128  80.49 [79.61,81.35] 0.773 0976 0.862 0.975 2925
Model8 32 99.54 [99.38,99.67] 0.996 0.996 0996 0.997 1919
Model8 64 80.17 [79.28,81.03] 0.998 0.685 0.812 0.801 2813
Model8 128  77.21 [58.77,60.91] 0.998 0.637 0.778 0.771 4089
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Figure 5 presents the corresponding test-set confusion matrix (TN =2,977, FP = 8, FN =
0, TP = 5,009), demonstrating that only eight neurotypical samples were misclassified,
where ASD represents autism spectrum disorder samples, and N represents the neurotypical
samples.

Confusion Matrix

5000

ASD

Actual

- 2000

- 1000

ASD predicted N

Figure 5: Confusion matrix for Model 4 (batch 32).

Both Model 6 (Batch Size 32) and Model 2 (Batch Size 64) also performed well, with
accuracies of 99.84% and 99.69%, respectively. Model 2 (Batch Size 64) was the fastest
model (357s training time) while maintaining high accuracy, making it the most
computationally efficient choice. Figure 6 highlights that smaller batch sizes (32, 64)
generally resulted in better accuracy, reinforcing the importance of batch size selection for
optimizing CNN performance.
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Figure 6: Accuracy across batch sizes
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When the batch size increased to 128, a significant drop in accuracy was observed in several
models. Model 3 (Batch Size 128) and Model 8 (Batch Size 128) showed the worst
performance, with accuracies of 77.19%, highlighting poor generalization at higher batch
sizes. Figure 7 illustrates the trade-off between training time and accuracy, where Model 4
(Batch Size 32), achieving the highest accuracy, required training time (822s). While model
8 (Batch Size 128) required the longest training time (4089s) and performed the worst,
making it the least efficient configuration.

Training Time vs Accuracy
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Figure 7: Training time vs accuracy
Figure 8 provides a comparison of training time across models and batch sizes, showing
that training time increases disproportionately with batch size. Model 7 (Batch Size 128)

and Model 8 (Batch Size 128) exhibited the highest computational cost, suggesting that
larger batch sizes lead to inefficient training with diminishing returns in accuracy.
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Figure 8: Training time comparison

These results indicate that smaller batch sizes (32, 64) are optimal for achieving high
accuracy and stable learning, while batch size 128 significantly degrades model
performance. Model 4 (Batch Size 32) emerges as the best overall choice, balancing
accuracy, precision, and computational efficiency.

Table 6 summarises reported accuracies for studies that analysed this exact dataset using
a variety of feature-extraction pipelines and classifiers. Although the CNN-based
spectrogram approach achieves high accuracy (99.89 %), given the initial nature of our
work. Nonetheless, the comparison highlights the effectiveness of time-frequency
representations.

Table 6: Comparison with existing methods that used the same dataset.

Authors Feature Extraction Classifier Accuracy (%)
Alsaggafetal [27] FFT FLDA 80.27
Tawhid et al. [25] Spectrograms CNN 99.15
Djemalet al. [28] DWT, SE ANN 98.60
Alhaddad et al. [29] FFT FLDA 90.00
Alturkiet al. [30] DWT, SE ANN 98.20
Kameletal. [31] FFT RFLD 92.06
Nuretal. [32] MLPN MLPN 80.00
This initial study Spectrograms CNN 99.89

ANN — artificial neural network; DWT— discrete-wavelet transform; FFT— fast Fourier transform,
FLDA — Fisher’s linear discriminant analysis; MLPN — multilayer perceptron network; RFLD —
regularised Fisher’s linear discriminant; SE — Shannon entropy.

4.0 CONCLUSION

The comparison between machine learning (ML) and deep learning (DL) models highlights
the advantages of deep learning in EEG-based ASD classification. Among the ML models,
Subspace KNN emerged as the most accurate, achieving 90.27% validation accuracy.
However, it required an extensive training time of 8.73 hours, making it less practical for
large-scale applications. In contrast, the CNN models significantly outperformed ML
models, with Model 4 (Batch Size 32) achieving the highest accuracy (99.89%) while
maintaining a strong balance across precision, recall, and AUC. This suggests that deep
learning is more effective for EEG-based ASD classification, offering higher accuracy and
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computational efficiency. The smaller batch sizes (32, 64) consistently lead to superior
model performance, while larger batch sizes (128) result in a decline in accuracy.

5.0 FUTURE WORK

Future work will ensure a class-balanced dataset; conduct independent testing as soon as
additional data become available; collect multi-session recordings for each participant and
apply rigorous data-splitting; and implement model-interpretation tools to identify the
frequency-time patterns that contribute most to the model’s decisions.
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