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1.0 INTRODUCTION 
 
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that affects how 
individuals communicate, interact socially, and process sensory information. It is called a 
spectrum disorder because it presents differently in each person, some individuals may have 
mild social difficulties, while others may experience significant challenges in 
communication and daily functioning [1]. Key characteristics of ASD include difficulty in 
social interactions, repetitive behaviors, and atypical sensory responses, such as heightened 
sensitivity to sounds, lights, or textures [2]. Over the years, ASD has become more widely 
recognized. The World Health Organization (WHO) estimates that ASD affects around 
0.76% of the global population [3], though this data represents only 16% of the world’s 
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ABSTRACT 

 
Dealing with children with Autism Spectrum Disorder (ASD) is challenging due to their 
sensory reactions, leading to behavioral issues, self-injury, and safety concerns. Many 
individuals with ASD also exhibit atypical sensory processing, increasing anxiety and 
difficulty in daily life. Existing diagnostic tools like the Autism Diagnostic Observation 
Schedule (ADOS) are subjective, time-consuming, and heavily dependent on trained 
professionals. This work is presented as a pilot feasibility study, based on EEG 
spectrograms, to establish a baseline for future large-scale investigations. The EEG data 
obtained from King Abdulaziz University Hospital, from 16 participants (12 ASD, 4 
neurotypical) were preprocessed to remove noise, segmented into 3.5-second windows, 
and transformed into time-frequency spectrogram images using the Short-Time Fourier 
Transform (STFT). These spectrograms were classified using both machine learning (ML) 
models, including Support Vector Machines (SVM), Decision Trees, and Ensemble 
Methods, and deep learning (DL) Convolutional Neural Networks (CNNs). While ML 
models achieved moderate accuracy, with Subspace KNN performing best at 90.27%, 
CNN architectures significantly outperformed them, Model 4 achieving accuracy of 
99.89%, demonstrating stability. Smaller batch sizes (32–64) optimized performance, 
whereas larger batches (128) degraded accuracy by up to 22%. The results highlight the 
transformative potential of deep learning in automating ASD diagnosis, offering a rapid, 
and clinically alternative to traditional methods.  
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child population, suggesting that the actual prevalence may be higher. Meanwhile, the 
Centers for Disease Control and Prevention (CDC) reports that approximately 1.68% of 8-
year-old children in the United States (equivalent to 1 in 59) are diagnosed with ASD [4]. 

Similarly, in Malaysia, the number of children diagnosed with autism has surged by 
663% between 2013 and 2023. According to data from the Department of Social Welfare 
(JKM) [5], the number of registered children with ASD increased from 6,991 in 2013 to 
53,323 in 2023. This trend was highlighted by Nancy Shukri, Minister of Women, Family 
and Community Development, in a written response to parliament on July 3, 2023 as shown 
in Table 1. The steady rise in ASD cases highlights the need for more efficient and objective 
diagnostic tools to support early intervention and treatment. In response to that, the state 
government and private sector are exploring ways to expand autism centers and improve 
ASD-related services. 

 
Table 1: Annual statistics of children diagnosed with ASD in Malaysia [5]. 

 
Year No Of Children Diagnosed With Autism 

2013 6,991 
2014 8,789 
2015 10,708 
2016 12,976 
2017 15,838 
2018 18,754 
2019 23,634 
2020 27,732 
2021 32,471 
2022 40,963 
2023 53,323 

 
 
Researchers have found differences in brain function and structure among individuals with 
ASD, particularly in areas responsible for social skills, communication, and sensory 
processing [6]. Diagnosing ASD remains a complex and time-consuming process, often 
relying on behavioral assessments like the Autism Diagnostic Observation Schedule 
(ADOS) and the Autism Diagnostic Interview-Revised (ADI-R) [7]. These evaluations 
require trained specialists, making them expensive and less accessible, especially in regions 
with limited healthcare resources. 

Because of these challenges, researchers are exploring new ways to make ASD 
diagnosis more efficient and objective. Different approaches have been explored to enhance 
the accuracy and efficiency of ASD diagnosis, ranging from neurophysiological monitoring 
to artificial intelligence (AI) driven behavioral analysis. Techniques such as functional 
Magnetic Resonance Imaging (fMRI), and functional near-infrared spectroscopy (FNIRS) 
have been used to assess brain connectivity in individuals with ASD. However, these 
methods are limited by high costs, restricted accessibility, and the need for specialized 
equipment [8,9]. In contrast, Electroencephalography (EEG) has been a suitable tool due 
to its high temporal resolution, ease of use, non-invasiveness, affordability, and widespread 
clinical availability [10]. EEG captures brain activity through scalp-attached electrodes, 
recording electrical impulses across different frequency bands. These signals, often 
complex and multi-channel, are traditionally interpreted by neurologists through visual 
inspection, a process that is prone to human error due to the lack of standardized assessment 
criteria [11,12]. However, EEG signals are complex and typically require expert 
interpretation. This is where artificial intelligence can play a transformative role. Several 
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types of machine learning models have been applied in this field, each with its own 
strengths. 

Tree-based models, such as Fine Tree, Boosted Trees, and Bagged Trees, are commonly 
used because they can handle complex data while remaining easy to interpret. Boosted 
Trees, in particular, have shown high accuracy in classifying ASD, especially when 
combined with techniques that scale and refine features for better results [13,14]. One 
challenge in ASD diagnosis is class imbalance, where the number of ASD cases in a dataset 
may be much smaller than non-ASD cases. RUSBoosted Trees, which combine random 
under-sampling with boosting, help address this issue by balancing the data and improving 
classification performance[15]. Subspace Discriminant and Subspace KNN make it easier 
to analyze complex EEG data, improving efficiency [16]. Meanwhile, Support Vector 
Machines (SVMs), including Quadratic, Cubic, and Gaussian versions, are great at 
handling non-linear patterns, making them reliable for detecting ASD from EEG and 
behavioral data[17]. 

One of the biggest advantages of deep learning (DL) models is that they can 
automatically learn patterns from raw data [18] without needing experts to manually extract 
features. Unlike traditional machine learning (ML) methods, which rely on predefined 
features selected by specialists, DL models can analyze complex EEG signals on their own, 
often leading to higher accuracy. However, a major challenge with DL is its "black-box" 
nature, meaning that it is difficult to understand exactly how the model makes its decisions. 

In one study [19], researchers used a Convolutional Neural Network (CNN) to analyze 
the power spectrum of EEG signals and detect ASD-related brain activity. Their three-layer 
CNN model achieved an accuracy of 90%, showing the potential of deep learning in ASD 
classification.While DL models can work directly with raw EEG data, some researchers 
choose to first extract key features before training. This helps reduce computation time and 
improves the model’s ability to focus on the most important aspects of EEG signals, leading 
to more efficient and reliable results.   

EEG signals constantly change over time, making it difficult to extract stable features 
for diagnosing ASD. Traditional methods, like Multiscale Entropy (MSE), have struggled 
to distinguish ASD-related brain activity from typical EEG patterns due to inconsistencies 
in scale extraction and sensitivity to frequency changes [20]. Researchers have started using 
time-frequency (T-F) spectrogram images to better capture the changing nature of EEG 
signals. These images visually represent EEG activity in the T-F domain, where different 
colors indicate energy variations across different frequencies over time [21]. This approach 
helps highlight key patterns in EEG data that traditional methods might miss, improving 
classification accuracy. 

T-F spectrogram images have already been successfully used to classify neurological 
disorders like Epilepsy and Sleep Stages [22], Alzheimer's Dementia [23], Seizure 
Classification [24], and ASD [25]. 
 
 
2.0  METHODS 
 
This study presents a machine learning, and deep learning-based framework for detecting 
ASD using EEG data. The methodology follows a structured approach shown in the 
following flowchart as Figure 1 illustrates the methodology for predicting ASD using EEG 
data, machine learning, and deep learning. The process begins with raw EEG Data, 
followed by Pre-Processing to remove noise and artifacts. The cleaned data undergoes 
Feature Extraction to identify discriminative patterns, which are then fed into multiple 
machine learning, and deep learning classifiers. 
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Figure 1: Workflow for ASD prediction using EEG data, ML,and DL. 

 
 
2.1  Experimental Framework  
 
This study consists of several key stages, beginning with data collection and preprocessing 
to remove noise and artifacts from raw EEG signals. The signals are then transformed into 
spectrogram images, which are subsequently used for classification using both machine 
learning (ML) and deep learning (DL) techniques. This process ensures that the EEG data 
is optimized for pattern recognition and classification, for ASD detection. 

To achieve this, the framework integrates both ML classifiers and Convolutional Neural 
Networks (CNNs) for automatic feature extraction and classification. The analysis of these 
two approaches provides insights into the most effective methodology for EEG-based ASD 
detection. 

 
2.2 Data Collection and Preprocessing  
 
The EEG dataset used in this study was obtained from King Abdulaziz University Hospital. 
The dataset contained EEG recordings from a total of sixteen participants, including twelve 
individuals diagnosed with ASD and four neurotypical control participants. This small 
dataset frames the present work as a pilot feasibility study. EEG recordings were conducted 
under controlled conditions to ensure the reliability of the data. 
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The EEG signals were captured using a 16-channel EEG system as shown in Figure 2 
with electrodes placed according to the 10-20 international system. A sampling frequency 
of 256 Hz was used to ensure high-resolution recordings. The EEG data was collected under 
resting-state EEG condition, where participants were asked to keep their eyes open and 
closed. 

Preprocessing was performed to clean the EEG signals and remove unwanted noise and 
artifacts. Initially, the raw EEG signals were extracted, and converted into numerical arrays 
for computational processing. A common average referencing technique was applied to 
reduce background noise by averaging signals across all electrodes. Subsequently, a 
bandpass filter (0.1–60 Hz) was used to retain only the frequency range relevant to 
brainwave activity, while a notch filter at 60 Hz eliminated powerline interference. To 
facilitate efficient analysis, the EEG signals were segmented into 3.5-second windows at a 
sampling rate of 256 Hz. Following segmentation, 

The dataset was split into training (6,796 spectrograms), validation (1,198), and test sets 
(7,994) containing (5,009 ASD) and (2,985 neurotypical) spectrograms (class ratio 1.68: 
1). The training set concluded 85% of the data, while the remaining 15% was allocated for 
validation. To avoid the appearance of leakage, all spectrogram windows originating from 
the same EEG recording session were placed entirely within a single data partition 
(training, validation, and test). Because each participant contributed only one session, 
participant-level leakage cannot be fully excluded and is addressed in the future work 
section. All images were normalized to a pixel range of [0,1] by applying rescaling. 

 

  
Figure 2: Electrodes placement of autism data acquisition system 

 
To assess the impact of batch size on training efficiency and model performance, 
experiments were conducted with batch sizes of 32, 64, and 128 for the deep learning 
models.  

 

 

 

Oz 

  

 



Hisham Mohamed Mahmoud Ismail, Mohd Syahril Ramadhan Mohd Saufia, Hanim Mohd Yatim 
Jurnal Mekanikal, December 2025, 48: 82-96 

 

 
DOI: 10.11113/jm.v48.582                                                                                                     Page 87 
 

The CNN models were trained with validation accuracy monitored throughout the 
training process. After training, performance was evaluated on the test set using accuracy, 
precision, recall, F1-score, AUC, and training time. Confusion matrices and ROC curves 
were generated to further analyze model predictions. 

 
2.3  Spectrogram Generation 
 
To transform EEG signals into a format suitable for deep learning, the Short-Time Fourier 
Transform (STFT) was applied to generate spectrogram images. Spectrograms provide a 
time-frequency representation of EEG signals, across standard brain wave bands—delta 
(0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (>30 Hz). This 
transformation from raw time-domain EEG to spectrogram format enables the model to 
visualize and learn patterns in power fluctuations across frequency bands over time, 
allowing the detection of patterns associated with ASD. The process of spectrogram 
generation involved several steps. First, a Hamming window function was applied to ensure 
smooth transitions between overlapping signal segments. The STFT was then computed to 
extract time-frequency features from the EEG signals. Finally, resulting spectrograms as 
illustrated in Figure 3 where Figure 3a shows images from ASD group and Figure 3b shows 
images from normal subjects., with a resolution of 128×128 pixels, which are suitable for 
CNN-based classification. These spectrogram images serve as the primary input for the 
machine learning, and deep learning models for automated feature extraction and 
classification. 
 

(a) 
Autism group 

 
(b) 

Normal group 

 
 

Figure 3: EEG spectrograms. (a) autism group. (b) normal group. 
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2.4 Feature Extraction for Machine Learning 
 
For the machine learning approach, spectrogram images were transformed into structured 
feature representations. Feature extraction was carried out using two primary techniques: 
Local Ternary Patterns (LTP) and Spatial Pyramid Matching (SPM). 

LTP was applied to spectrogram images to capture the textural properties of EEG 
signals. This technique encodes spatial relationships between pixel intensities, enabling the 
identification of patterns associated with ASD. To further enhance feature extraction, the 
spectrogram images were divided into multiple subregions using SPM. Histograms of the 
LTP-transformed images were computed for each subregion, ensuring that both global and 
localized features were captured. 

Following feature extraction, Principal Component Analysis (PCA) was applied to 
reduce the dimensionality of feature vectors. PCA retained only the most informative 
components, minimizing the risk of overfitting. These extracted feature vectors were then 
used as inputs for machine learning classifiers. 

 
2.5 Classification Approaches 

 
Two classification approaches were used: machine learning models and deep learning 
models. The machine learning approach involved training various classifiers using the 
extracted feature vectors, while the deep learning approach utilized CNNs for automatic 
feature extraction and classification. 

For the machine learning approach, several supervised learning algorithms were tested, 
shown in Table 2 including Support Vector Machines (SVM), Decision Trees (DT), K-
Nearest Neighbors (k-NN), and ensemble learning techniques such as Bagged and Boosted 
Trees. These models were trained in MATLAB, and their performance was evaluated based 
on accuracy, error rate, and computational efficiency. 

 
Table 2: Machine learning models 

 
Model Hyperparameters 
Fine Tree Max splits: 300, Split criterion: Gini's diversity index, Surrogate 

decision splits: Off 
Boosted Trees Ensemble method: Boosting, Max learners: 30, Learning rate: 0.1 
Bagged Trees Ensemble method: Bagging, Max splits: 25597, Learner type: 

Decision tree, Max learners: 30 
Subspace Discriminant Ensemble method: Subspace, Learner type: Discriminant, Max 

learners: 30, Subspace dimension: 640 
Subspace KNN Ensemble method: Subspace, Learner type: Nearest neighbors, Max 

learners: 30, Subspace dimension: 640 
RUSBoosted Trees Ensemble method: RUSBoost, Learner type: Decision tree, Max 

learners: 30, Learning rate: 0.1, Max splits: 20 
Custom Tree Max splits: 300, Split criterion: Gini's diversity index, Surrogate 

decision splits: Off 
Quadratic SVM Kernel function: Quadratic, Kernel scale: Automatic, Box constraint: 

1, Multiclass coding: One-vs-One 
Cubic SVM Kernel function: Cubic, Kernel scale: Automatic, Box constraint: 1 
Fine Gaussian SVM Kernel function: Gaussian, Kernel scale: 8.9, Box constraint: 1 
Medium Gaussian SVM Kernel function: Gaussian, Kernel scale: 36, Box constraint: 1 
Coarse Gaussian SVM Kernel function: Gaussian, Kernel scale: 140, Box constraint: 1 

 
 
For the deep learning approach, Convolutional Neural Networks (CNNs) were 
implemented to identify ASD directly from spectrogram images. As shown in Table 3, 
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eight CNN architectures were developed to evaluate model complexity, regularization 
techniques, and feature extraction capabilities. 
 

Table 3: Deep learning models 
 

Model Architecture 
Model 1 Three convolutional layers (32→64→128 filters, 3×3 kernels) with 

R eL U  activation and max- pooling (2×2) 
 

Model 2 Basic CNN + Dropout (50%) after pooling layers to reduce overfitting 
 

Model 3 Six convolutional layers (32→ 256 filters) for hierarchical feature 
learning 
 

Model 4 Basic CNN + Batch Normalization after each convolution to stabilize 
training 

Model 5 ReLU replaced with LeakyReLU (α=0.3) to prevent silent neurons 

Model 6 E xpanded filters (64→ 256) to enhance feature representation 
 

Model 7 Basic CNN + real-time augmentation (rotation ±15°, horizontal flip) 
 

Model 8 C onv2D  layers (32→ 64 filters) →  R eshape →  L ST M  (64 units) →  D ense 
 
The CNN models were trained using the Adam optimizer with a learning rate of 0.001. A 
binary cross-entropy loss function was used, as it is well-suited for binary classification 
tasks. To assess the impact of batch size on model performance, experiments were 
conducted with batch sizes of 32, 64, and 128 over five epochs. Model evaluation was based 
on accuracy, precision, recall, F1-score, AUC, and training time. The training process was 
implemented using pycharm. 
 
 
3.0 RESULTS AND DISCUSSION  
 
This section presents the performance evaluation of both ML and DL models in classifying 
ASD based on EEG spectrogram images. The results are analyzed in terms of accuracy, 
training time, and computational efficiency, highlighting the strengths and weaknesses of 
different models. 
 
3.1 Machine Learning Results. 
 
The classification performance of various machine learning models was evaluated to 
determine the most effective approach. Table 4 summarizes the validation accuracy, error 
rate, and training time for different ML models. 
 

Table 4: Machine learning performance metrics. 
 

Model Accuracy (Validation) Error Rate 
(Validation) 

Training Time 
(sec) 

Fine Tree 86.47% 13.53% 281.53 
Boosted Trees 87.80% 12.20% 5032.2 
Bagged Trees 88.85% 11.15% 34479.0 
Subspace Discriminant 85.21% 14.79% 2506.5 
Subspace KNN 90.27% 9.73% 31454.0 
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RUSBoosted Trees 83.39% 16.61% 6071.8 
Custom Tree 87.21% 12.79% 9883.7 
Quadratic SVM 86.02% 13.98% 28818.0 
Cubic SVM 85.99% 14.01% 45243.0 
Fine Gaussian SVM 50.63% 49.37% 42252.0 
Medium Gaussian SVM 85.69% 14.31% 33063.0 
Coarse Gaussian SVM 84.66% 15.34% 37472.0 

 
 
The Subspace KNN model achieved the highest validation accuracy of 90.27% with a low 
error rate of 9.73%. However, its training time of 31,454 seconds (8.73 hours) was 
relatively high, making it computationally expensive. 

Bagged Trees provided a strong balance between accuracy (88.85%) and training time 
(9.58 hours, 34,479 seconds), making it an excellent choice for applications that demand 
both high accuracy and reasonable computational efficiency. 

The Fine Gaussian SVM performed the worst, with an accuracy of only 50.63%, making 
it unsuitable for practical use. Despite this poor performance, it had a long training time of 
11.73 hours (42,252 seconds), indicating inefficiency in both accuracy and computational 
requirements. 

On the other hand, RUSBoosted Trees offered moderate accuracy at 83.39%, but its 
training time of 16.87 hours (60,718 seconds) made it one of the least efficient models in 
terms of both accuracy and computational performance. 

The relationship between training time and validation accuracy for the tested ML 
models is illustrated in Figure 4. The dual-axis chart presents validation accuracy as blue 
bars (left y-axis) and training time in hours as a red line (right y-axis), allowing a direct 
visual comparison of model performance. Models like Subspace KNN and Bagged Trees 
stand out with high accuracy bars, while RUSBoosted Trees and Fine Gaussian SVM are 
notable for their long training time spikes in the red line. Conversely, Subspace 
Discriminant shows a very low training time but also suffers from low accuracy. 
 

 
Figure 4: Machine learning accuracy and training time. 
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3.2 Deep Learning Results. 
 
CNN models were evaluated using different architectures and batch sizes to determine the 
optimal configuration. Their performance was assessed based on accuracy, precision, 
recall, F1-score, AUC, and training time. To ensure statistical presentation, 95% Wilson 
confidence intervals (CIs) were computed for each model [26]. The Wilson interval is 
preferred over the standard Wald method, especially for high or low proportions, due to its 
improved coverage properties and reduced bias near the boundaries [26]. The interval is 
defined as shown in equation 1:    

 𝑝̂𝑝 = 𝑘𝑘
𝑛𝑛

 ,            𝐶𝐶𝐶𝐶𝐶𝐶 = 
𝑝𝑝� + 

𝑧𝑧2

2𝑛𝑛
 ± 𝑧𝑧 ⋅ �𝑝𝑝�(1−𝑝𝑝�)

𝑛𝑛
 + 

𝑧𝑧2

4𝑛𝑛2

1 + 
𝑧𝑧2

𝑛𝑛

                              (1)                            

 
where 𝑝̂𝑝 is the observed proportion (accuracy), n is the total number of test samples, k 

is the correct predictions, and z is the z-score for the 95% confidence level (z = 1.96). This 
interval provides a more reliable estimation of the model’s true accuracy, by correcting for 
potential sampling variability.  

As presented in Table 5, the best-performing model was Model 4 with a batch size of 
32, achieving the highest accuracy (99.89%) and a Wilson interval [99.80, 99.95], Although 
Model 4 (batch 32) achieved an apparent accuracy of 99.89 %, these values are preliminary 
and likely optimistic given the sample size and the class ratio of 1.68 : 1 described in 
Methods. 

 
Table 5: Deep learning performance Metrics. 

 
Model 
Name 

Batch 
Size 

Accuracy 
(%) 

95% CI 
(Wilson) 

Precision Recall F1- 
Score 

AUC Training 
Time (s) 

Model 1 32 99.83 [99.72, 99.90] 0.998 0.999 0.998 0.998 447 
Model 1 64 99.36 [99.16, 99.51] 0.998 0.991 0.994 0.994 380 
Model 1 128 99.48 [99.30, 99.62] 0.996 0.996 0.995 0.995 567 
Model 2 32 99.79 [99.68, 99.88] 0.998 0.998 0.998 0.999 414 
Model 2 64 99.69 [99.54, 99.79] 0.998 0.997 0.997 0.997 357  
Model 2 128 98.53 [98.25, 98.78] 0.989 0.987 0.988 0.986 641 
Model 3 32 88.61 [87.90, 89.29] 0.998 0.819 0.900 0.983 428 
Model 3 64 81.84 [81.00, 82.68] 0.998 0.712 0.830 0.817 400 
Model 3 128 77.19  [76.26, 78.10] 0.998 0.637 0.777 0.772 584 
Model 4 32 99.89  [99.80, 99.95] 0.998 0.999 0.998 0.999 822 
Model 4 64 99.82 [99.71, 99.90] 0.998 0.997 0.997 0.997 800 
Model 4 128 99.62 [99.45, 99.75] 0.996 0.995 0.996 0.995 1001 
Model 5 32 99.78 [99.66, 99.87] 0.997 0.994 0.995 0.998 525 
Model 5 64 99.42 [99.23, 99.57] 0.992 0.988 0.969 0.997 464 
Model 5 128 97.66 [97.31, 97.97] 0.993 0.986 0.982 0.987 690 
Model 6 32 99.84 [99.72, 99.90] 0.998 0.999 0.998 0.999  1200 
Model 6 64 99.37 [99.16, 99.51] 0.998 0.997 0.998 0.998 970 
Model 6 128 98.71 [98.44, 98.94] 0.995 0.987 0.986 0.987 2496 
Model 7 32 98.22 [97.97, 98.40] 0.996 0.998 0.993 0.997 1100 
Model 7 64 84.15 [83.33, 84.93] 0.850 0.747 0.763 0.747 1034 
Model 7 128 80.49 [79.61, 81.35] 0.773 0.976 0.862 0.975 2925 
Model 8 32 99.54 [99.38, 99.67] 0.996 0.996 0.996 0.997 1919 
Model 8 64 80.17 [79.28, 81.03] 0.998 0.685 0.812 0.801 2813 
Model 8 128 77.21 [58.77, 60.91] 0.998 0.637 0.778 0.771 4089  
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Figure 5 presents the corresponding test-set confusion matrix (TN = 2,977, FP = 8, FN = 
0, TP = 5,009), demonstrating that only eight neurotypical samples were misclassified, 
where ASD represents autism spectrum disorder samples, and N represents the neurotypical 
samples.  
 

 
 

Figure 5: Confusion matrix for Model 4 (batch 32). 
 
Both Model 6 (Batch Size 32) and Model 2 (Batch Size 64) also performed well, with 
accuracies of 99.84% and 99.69%, respectively. Model 2 (Batch Size 64) was the fastest 
model (357s training time) while maintaining high accuracy, making it the most 
computationally efficient choice. Figure 6 highlights that smaller batch sizes (32, 64) 
generally resulted in better accuracy, reinforcing the importance of batch size selection for 
optimizing CNN performance. 
 
 

 
 

Figure 6: Accuracy across batch sizes 
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When the batch size increased to 128, a significant drop in accuracy was observed in several 
models. Model 3 (Batch Size 128) and Model 8 (Batch Size 128) showed the worst 
performance, with accuracies of 77.19%, highlighting poor generalization at higher batch 
sizes. Figure 7 illustrates the trade-off between training time and accuracy, where Model 4 
(Batch Size 32), achieving the highest accuracy, required training time (822s). While model 
8 (Batch Size 128) required the longest training time (4089s) and performed the worst, 
making it the least efficient configuration. 
 

 
 

Figure 7: Training time vs accuracy 
  
Figure 8 provides a comparison of training time across models and batch sizes, showing 
that training time increases disproportionately with batch size. Model 7 (Batch Size 128) 
and Model 8 (Batch Size 128) exhibited the highest computational cost, suggesting that 
larger batch sizes lead to inefficient training with diminishing returns in accuracy. 
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Figure 8: Training time comparison 
 
These results indicate that smaller batch sizes (32, 64) are optimal for achieving high 
accuracy and stable learning, while batch size 128 significantly degrades model 
performance. Model 4 (Batch Size 32) emerges as the best overall choice, balancing 
accuracy, precision, and computational efficiency. 
   Table 6 summarises reported accuracies for studies that analysed this exact dataset using 
a variety of feature-extraction pipelines and classifiers. Although the CNN-based 
spectrogram approach achieves high accuracy (99.89 %), given the initial nature of our 
work. Nonetheless, the comparison highlights the effectiveness of time-frequency 
representations. 
 

Table 6: Comparison with existing methods that used the same dataset. 
 

Authors Feature Extraction Classifier Accuracy (%) 

Alsaggaf et al. [27] FFT FLDA 80.27 

Tawhid  et al. [25] Spectrograms CNN 99.15 

Djemal et al. [28] DWT, SE ANN 98.60 

Alhaddad et al. [29] FFT FLDA 90.00 

Alturki et al. [30] DWT, SE ANN 98.20 

Kamel et al. [31] FFT RFLD 92.06 

Nur et al. [32] MLPN MLPN 80.00 

This initial study Spectrograms CNN 99.89 

ANN – artificial neural network; DWT – discrete-wavelet transform; FFT – fast Fourier transform; 
FLDA – Fisher’s linear discriminant analysis; MLPN – multilayer perceptron network; RFLD – 
regularised Fisher’s linear discriminant; SE – Shannon entropy. 
 
 
4.0 CONCLUSION 
The comparison between machine learning (ML) and deep learning (DL) models highlights 
the advantages of deep learning in EEG-based ASD classification. Among the ML models, 
Subspace KNN emerged as the most accurate, achieving 90.27% validation accuracy. 
However, it required an extensive training time of 8.73 hours, making it less practical for 
large-scale applications. In contrast, the CNN models significantly outperformed ML 
models, with Model 4 (Batch Size 32) achieving the highest accuracy (99.89%) while 
maintaining a strong balance across precision, recall, and AUC. This suggests that deep 
learning is more effective for EEG-based ASD classification, offering higher accuracy and 
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computational efficiency. The smaller batch sizes (32, 64) consistently lead to superior 
model performance, while larger batch sizes (128) result in a decline in accuracy. 
 
5.0 FUTURE WORK  
 
Future work will ensure a class-balanced dataset; conduct independent testing as soon as 
additional data become available; collect multi-session recordings for each participant and 
apply rigorous data-splitting; and implement model-interpretation tools to identify the 
frequency-time patterns that contribute most to the model’s decisions. 
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