
Jurnal Mekanikal 
December 2012,  No.35 , 54-62 

 

54 
 

 
 
 

MULTI-RELAXATION TIME LATTICE BOLTZMANN 
SIMULATION FOR INCOMPRESSIBLE FLUID FLOW  

 
Mohamad Pourtousi, Nor Azwadi Che Sidik*, Arman Safdari, Aman Ali Khan,  

Leila Jahanshaloo 
 

Faculty of Mechanical Engineering, 
Universiti Teknologi Malaysia, 

81210 Skudai, Johor Bahru 
Johor DT, Malaysia 

 
 

ABSTRACT  
 
In this paper, multi-relaxation time of lattice Boltzmann method is used to compute the flow 
characteristics in the cavity located on a floor of horizontal channel. The results are compared with 
the conventional single-relaxation time lattice Boltzmann scheme and benchmark solution for such 
flow configuration. The multi-relaxation time lattice Boltzmann scheme demonstrated good 
agreement, which supports its validity in computing fluid flow problem. 
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1.0 INTRODUCTION 
 
The Lattice Boltzmann Method (LBM) recently has received considerable attention by researchers 
in all scientific domains and it has been developed as an alternative approach for solving various 
fluid flow problems [1, 2]. This method is as an extension of the lattice gas automata (LGA) or as a 
special discrete from the Boltzmann equation from the kinetic theory [3, 4]. It utilizes particle 
distribution function to describe the collective behaviors of fluid molecules. The macroscopic 
quantities such as density, velocity and temperature are obtained through moment integrations of 
the distribution function. Among the advantages of LBM are their intrinsic parallelisms of 
algorithm, easy to apply for complex domains, simple algorithm, and ease of incorporating 
microscopic interaction [5]. It is successfully applied in several of complex fluid system, such as 
multiphase-fluids, flow of suspension, compressible flows and magneto-hydrodynamics [6, 7]. 

Generally, there are types of isothermal LBM exist in the literature, the Bhatnagar-Gross-
Krook (BGK) LBM model or Single-Relaxation-Time (SRT) model and Multi-Relaxation-Time 
(MRT) LBM model. Both of these two models can be derived from the linearized Boltzmann 
equation [8, 9] and the different between them resides in their collision terms. SRT model is the 
simplest solution for fluid simulation and thus is also the most popular model. However, the method 
of SRT may lead to numerical instability when the relaxation time τ closes to 0.5 [10-12]. One way 
to overcome this instability of the SRT model is to use a MRT model which nevertheless retains the 
simplicity and computational efficiency of the SRT model [6, 13, 14]. 

In this work, the flow characteristics in a lid-driven square predicted by MRT-LBM and 
SRT-LBM models are reported. The main objective of the computation is to demonstrate the  
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capability of the models for prediction of complex flow in a confined space at low and 
moderate Reynolds number. After showing the advantages of MRT LBM over SRT LBM, the 
predictions were carried out for the solid-fluid flow from a cavity in a horizontal channel. For 
validation purpose, the obtained results will be compared with the previous experimental studies by 
Fang et al [15]. 

This paper is organized as follow: in the next section the mathematical formulation and 
numerical models are given. Then the numerical results and analyses concerning the parametrical 
study for the lid-driven cavity flow and solid-fluid flow are presented in the section three. Finally, 
section four concludes the current study. 
 
2.0 SRT AND MRT LBM MODELS  
 
In lattice Boltzmann method, the physical space is discretized into uniform lattice nodes. Every 
node in the network is connected with its neighbors through a number of lattice velocities that are to 
be determined through the selected model. Generally, the governing equation of lattice Boltzmann 
equation is given by 
 

                    
( ) ( ) ( )ftftttatf Ω=−∆+∆+∆+ ,,,, cxccx                               (1) 

 
where f  is the distribution function for particles with velocity c  at time t . 

Equation (1) consist of two terms; the collision term Ω (right-hand side), which refers the 
collision of the particle distribution function and the propagation term (left-hand side), which refers 
to the propagation of the distribution function to the next node in the direction of its probable 
velocity.   

According to the literature, there are a few versions of collision operators. Amongst the 
proposed models, Bhatnagar-Gross-Krook (BGK) model or SRT model introduce a simplified and 
efficient model for collision operator Ω in lattice Boltzmann equation [16-18]. This equation is 
given by:  

 

                            
( ) ( ) ( )[ ]tftff eq ,,,,

1
cxcx −−=Ω

τ
                               (2) 

 

where eqf is the equilibrium distribution function and t is called the relaxation time, which is the 
time to reach the equilibrium condition during the collision process.  

Substituting Eq. (2) into (1), we obtain the general LBE as follow 
 

               
( ) ( ) ( ) ( )[ ]tftftftttatf eq ,,,,

1
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               (3) 

 

where eqf is the equilibrium distribution function given as 
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The discrete velocities for D2Q9 model as shown in Figure 1, are: 
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Figure 1: 9-velocity LBE model for 2D square lattice 
 
The macroscopic density and velocities can be computed simply by moment integration as 
 

                                                          ∑=
i ifρ                                                                   (6) 
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                                                            (7) 

 
The incompressible Navier-stokes equation can be derived from the incompressible lattice 
Boltzmann model through the Chapman-Enskog procedure [19, 20]. 

Recently, Lallemand and Luo [10] suggested that the use of a MRT model could improve 
the numerical stability. The collision step in velocity space is difficult to perform; it is more 
convenient to perform the collision process in the momentum space [5]. 

The multi-relaxation-time lattice Boltzmann equation reads 
 

                            
( ) ( ) ( ) ( )[ ]tmtmSMtfttf eq

ii ,,,. 1 xxxxcx −−=−∆+∆+ −                            (8)  
 

Where ( , )m x t and   are vectors of moments, ( )0 1 2, , , ...
T

nm m m m m= . The relaxation matrix S is a 

diagonal matrix. 
The mapping between velocity and moment spaces can be performed by linear 

transformation as follow 
 

                                                              m Mf=                                                                   (9) 
 

                                                             
1f M m-=                                                              (10) 

 
 
 

 
The matrix M for D2Q9 is: 
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Then the moment vector m is: 
 

                                               
( )Txyxxyyxx PPqjqjem ,,,,,,,, ∈= ρ                              (12) 

 
where, ρ is the fluid density, ∈ is related to the square of the energy e , xj  and yj  are the mass flux 

in two directions, and xxP  and xyP  correspond to the diagonal and off-diagonal component of the 

viscous stress tensor. 

 The equilibrium of the moment eqm  is: 
 

                                               ρ=eqm0

                      
(13) 
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where xx uj ρ=  and yy uj ρ= . 

 
 
 
The diagonal matrix S is 
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In compact notation S can be written as; 
 

                                    
( )3 5 7 81.0,1.4,1.4, ,1.2, ,1.2, ,S diag s s s s=                         (23) 

 
where ( )υ61287 +== ss  , 3s  and 5s  are arbitrary, can be set to 1.0. 

Note here that it is possible to recover the SRT-LBM solution from MRT-LBM by setting 
 

                                      τ1876421 ====== ssssss .                              (24) 
 
3.0 NUMERICAL TEST 
 

In this section, the SRT and MRT LBM were applied to simulate flow in a square cavity 
driven by shear force at the top boundary. The top lid is moved with different speed to get different 
Reynolds number (Re) from 100 until 1000. The Reynolds number is defined as  

 

                                                       υ
HU top=Re                                                                  (25) 

 
where, υ is a kinematic viscosity of the fluid and H is the height of the cavity.  

Figures 2 and 3 show the horizontal and vertical velocity profiles at the mid-width and mid-
height of the cavity for Re = 100, 400 and 1000 respectively. As can be seen from the figures, SRT 
and MRT shown good agreement when compared with the experimental data by Ghia [21] for Re = 
100 and 400. However, when the Reynolds number increases to 1000, the instability appears for the 
SRT and fails to produce the final results. 

 
                             (a)                                                 (b)                                              (c) 
 

Figure 2: Horizontal velocity profile for (a) Re = 100, (b) Re = 400, (c) Re = 1000 

x x x 
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                             (a)                                                 (b)                                              (c) 
 

Figure 3: Vertical velocity profile for (a) Re = 100, (b) Re = 400, (c) Re = 1000 
 

4.0 NUMERICAL RESULTS 
 

In the next analysis, the transient hydrodynamic removal of solid particles at different aspect ratio 
of cavity in horizontal channel is presented. Three different values of Reynolds number (Re = 50, 
Re = 100, and Re = 400) were tested with parabolic velocity profile at the inlet. Figure 4 shows the 
snapshots of solid fluid flow from the cavity at cavity aspect ratio Ar = 4 and Reynolds number Re 
= 50. 
a) 

 
b) 

 
c) 

 
d) 

 
 

Figure 4: Snapshots of fluid solid flow from cavity 
 
 
 



Jurnal Mekanikal, December 2012 

60 
 

 

 
 

Figure 5: Percentage of particles removal from cavity with Ar = 1 (left) and Ar = 2 (right) 
 
 

 
 

Figure 6: Percentage of particles removal from cavity with Ar = 3 (left) and Ar = 4 (right) 
 
 
 
 

 
 

Figure 6: Comparison of percentage of particles removal from cavity at Re = 50 
 
Figures 4 and 5 demonstrate the time history of solid particle removal from cavity with aspect ratio 
Ar = 1-4 and various Reynolds numbers. As can be seen from the figures, the percentage of 
particles removal from a cavity increases linearly with the Reynolds numbers. High Reynolds 
number results in high speed of flow velocity inside a cavity and strong formation of vortex into a 
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cavity. Therefore, this phenomenon will drag the particles into lower region of vortex and the 
particles are removed from a cavity due to the inertia forces. In the present study, the maximum 
percentage of particles removal after reach steady state condition is 66% which is at Re = 400 
aspect ratio, Ar = 4. Comparison with previous studies as shown in Figure 6 also show excellent 
agreement indicating the capability of MRT LBM to simulate complex fluid flow phenomena.  
 
5.0 CONCLUSIONS 
 

Numerical computations of the shear driven cavity flow were performed using single-
relaxation and multi-relaxation lattice Boltzmann methods. A review of the SRT and MRT model 
were presented to understand the formulation of the both models. Then the results of the 
computations of the flow characteristics and rate of contaminant removal from a cavity in channel 
in the cavity were compared between the MRT and benchmark solutions. The MRT scheme 
demonstrated excellent agreement at various values of Reynolds number and aspect ratios. Future 
works would focus on the extension to three-dimensional scheme and inclusion of thermal effect. 
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