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 ABSTRACT  

 
In this paper, the coupled lattice Boltzmann simulation scheme with second Newton’s law 

is proposed to predict the behavior of a solid particle in lid-driven cavity flow. The lattice 

Boltzmann scheme alone is first performed to characterize the fluid flow at Reynolds 

number of 100 and 400. Comparisons with the benchmark results demonstrate the 

applicability of the method to reproduce complex fluid structure in the system. The same 

density of buoyant particle is then inserted in the cavity, and its transient orbit at 

Reynolds number of 130 is plotted. Although the initial trajectories are found slightly 

deviate from the experimental results due to initial transient error, the general pattern is 

considered to be in close agreement with those published in the literatures. 

 

Keywords : Lattice Boltzmann, second Newton’s law, solid particle, lid-driven cavity 

flow. 

 

1.0 INTRODUCTION 

 

The phenomenon of multiphase flow can be seen not only in daily live situations but also 

in almost all engineering applications. The importance in understanding this problem 

results in many technical papers appear in recent years discussing its impacts on 

engineering. Among the researches pertinent to this problem, very few researchers 

devoted their study on the interaction between solid particles and fluid flow. Interestingly, 

this type of multiphase fluid flow plays an important role in the seeds drying technology, 

separation of grains, productions of milk powder, fluidized beds, coal combustion and 

many others.  

The authors believe that the main reason of lack of understanding on the fluid-solid 

interaction phenomenon is the complicated nature of the problem. The size of solid 

particles can be as big as grains seed or very tiny such as dust pollutant. Till present day, 

most researchers rely on computational rather than experimental approach to study the 

behaviour of these particles in fluid flow. To the best of authors’ knowledge, only Tsorng 

et. al. [1] reported details experimental results on the behavior of solid particles in lid-

driven cavity flow from micro to macro size of particle. According to their paper, high 

accuracy of laser equipments together with high-speed digital image capture and data 

interpretation system are required to obtain reliable experimental data. Such these high 

cost experimental devices will not be affordable if not supported by research fund.  As an 

alternative approach, most researchers considered fully computational scheme in their 

investigations. Kosinski et. al. [2][3][4] provides extensive numerical results on the 
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subject. From the behaviour of one particle in a lid-driven cavity flow to thousands of 

particles in expansion horizontal pipe have been studied in their research works sheds 

new hope in understanding this problem. Kosinski et al applied the combination of 

continuum Navier-Stokes equations to predict fluid flow and second Newton’s law for 

solid particle. As their model predicts excellent results when compared to the 

experimental results, however, the complicated nature of Navier-Stokes equation 

demands high computational time in resolving fluid part. High computational grid is 

required as the size of particle becomes smaller in order to correctly capture the position 

of particle in the system. In contrast, the mathematical foundation of lattice Boltzmann 

method (LBM) [5] makes it a suitable tool for fluid-solid interaction prediction. 

LBM foundation adopts the kinetic theory of gases which considers the evolution 

of fluid based on the behaviour at molecular level [6][7]. Accordingly, LBM resolves the 

macroscale of fluid flow indirectly by solving the evolution equation of particle 

distribution function and models the propagation and collision of particle distribution 

which are believed to be the fundamental behaviours at molecular level [8]. From this 

similarity between the mechanisms of LBM and the behaviour of solid particle, it is 

considered that the LBM is the best choice to couple with the second Newton’s law for 

prediction of fluid-solid interaction. 

  

 

2.0 MATHEMATICAL FORMULATION 
 

The lattice Boltzmann Method (LBM) involves the evolution equation of single particle 

distribution function f and can be written as [9][10][11] 
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where f and 



fi
eq  are the density and equilibrium density distribution functions. ci is the 

lattice velocity and i is the lattice direction, t is the time interval, and  is the relaxation 

times of the density distribution function. In LBM, the magnitude of ci is set up so that in 

each time step t, the distribution function propagates in a distance of lattice nodes 

spacing x. This will ensure that the distribution function arrives exactly at the lattice 

nodes after t and collides simultaneously. 

The macroscopic variables such as the density  and velocity of fluid u can be 

computed in terms of the particle distribution functions as 
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To simulate fluid flow, one often uses the D2Q9 model [12], a nine lattice 

velocities assigned on a two-dimensional square lattice. These velocities include eight 

moving velocities along the links connecting the lattice nodes of the square lattice and a 

zero velocity for the rest particle. The rest particle is defined by the distribution functions 

f0, the particles moving in the orthogonal direction by the function fi (i = 1,2,3,4) and the 

particles moving in the diagonal directions by the function fi (i = 5,6,7,8). 

The equilibrium distribution functions 



fi
eq

 is given as 
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= pwi    22
5.1.5.4.31 uucuc ii                                    (3) 

  

 

where 



  is the weight function and depends on the direction of the lattice velocity. 

Through the multiscaling expansion, the mass and momentum equations can be 

derived for the D2Q9 model of the evolution equation of the density distribution function. 

Details derivation can be found in [13]. The time relaxation,  in lattice Boltzmann 

formulation can be related to the fluid viscosity in the macroscopic world as follow 

 



  30.5                 (4) 

 

In present investigation, we only consider one particle in a lid driven cavity and 

assume the presence of solid particle gives no effect to the fluid flow.  The equation of 

motion for solid particle is written as 

 



mp
dv p

dt
 fp                              (5) 

  

 

where 



mp , 



v p  and 



fp  are the mass of particle, its velocity and drag force acting on 

particle due to surrounding fluid. According to Kosinski et.al., the drag force can be 

written as follow 

 



fp CDAp
u v p u v p 

2
                           (6) 

 

where 



Ap  is the projected area of solid particle and 



CDis the drag coefficient which is 

given as 

 



CD 
24

Rep
  (7) 

 

The particle’s Reynolds number in the above equation is calculated as follow 

 



Rep 
dp u v p


                (8) 

 

where 



d p  is the diameter of solid particle.  

 

In summary, the evolution of the scheme consists of three steps. Once the initial 

values of 



u, 



v p , 



mp and initial position of solid particle 



xp , yp  are specified, then the 

system evolves in the following steps. 

i) The drag force acting on solid particles is calculated from eqs. (6-8). 

ii) Since the pre-calculated value of 



v p
n
 is known at previous time step, the 

new value of particle’s velocity 



v p
n1

 can be calculated from eq. (5) as 

follow 
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 v p
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iii) Finally, the new position of solid particle can be determined as follow 

 



x p
n1

 v p
n1
tx p

n  

 

 

3.0 NUMERICAL SIMULATIONS 

 

The simulation of lid-driven cavity flow start with the absence of solid particle in the 

system. The simulations were carried out at two values of fluid’s Reynolds number which 

are 100 and 400 and defined as 

 



Re
UL


         (9) 

 

where U, L  and 



  are the velocity of the top lid, width of the cavity and fluid’s viscosity 

respectively. Figure 1 shows the computed streamline for these two cases. For Re = 100, 

the center of vortex is located at about one-third of the cavity depth from the top. As Re 

increase, the primary vortex moves towards the center of cavity and increasing circular. 

In addition to the primary, a pair of counter rotating eddies develop at the lower corners 

of the cavity and getting bigger in size when Re increases. In order to validate the 

computed results, we compared the velocity profile at the mid-width and mid-height of 

the cavity with the benchmark results provided by Ghia et. al. [14]. Figure 2 shows the 

comparisons of velocity profiles and excellent agreements is obtained, providing some 

further confidence in the approach.  

 

 

         
(a) Re = 100                                                            (b) Re = 400 

 

Figure 1:  Streamline plots for two values of Reynolds numbers. 
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Figure 2: Comparisons of velocity profiles between LBM and benchmark results for  

                Re = 100(left) and Re = 400 (right). 

 

 

In the next prediction, the solid particle with 3-unit diameter is positioned in a 100-

unit of square cavity near the top lid. The top lid of the cavity is constantly moved to the 

right so that the dimensionless magnitude of Reynolds number will be 130. The position 

of particle at every time step is recorded and plotted in Figure 3. The result obtained by 

experimental approach published by Tsorng et.al. [1] is brought for the sake of result’s 

comparison. As can be seen from the figures, except for a short interval of time around 

the starting point, the predicted orbits are quite similar in character.  

 

   

 
 

Figure 3:  Orbits of particle plotted from experimental investigation of Tsorng et.al [1] 

(left) and current method (right). 

 

  

4.0 CONCLUSIONS 

 

In this paper, the behavior of solid particle in lid-driven cavity flow was predicted using 

the lattice Boltzmann method and second Newton’s law. Validation of computer code 

was first carried out to characterize the flow field without the presence of solid particle. 

Simulation at Reynolds numbers of 100 and 400 correctly predicted the flow structure 

and corner eddies in the system. Simulation with the presence of solid particles was 

conducted at Reynolds number of 130. Good agreements were obtained with the 

experimental results when the plotted particle’s orbit at transient condition was compared. 

It is concluded that the presented results support the idea that the lattice Boltzmann 

simulation scheme contains sufficient qualities to predict fluid-solid interaction.  
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