NUMERICAL ANALYSIS ON FATIGUE LIFE PREDICTION OF CANCELLOUS BONE RESPECT TO NORMAL WALKING LOADING

Authors

  • Mohammad Mostakhdemin Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Fatihhi S.J Fatihhi S.J Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Muhamad Noor Harun Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Ardiyansyah Syahrom Sport Innovation and Technology Centre, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

Keywords:

Fatigue, Cancellous bone, Trabecular bone, FE Simulation

Abstract

Osteoporosis disease makes bone fragile and weak to withstand against load and bodyweight. Damage initiated depends on different morphological indices and angle of oriented trabeculae. Fatigue analysis performed in strain-based approach for bovine trabecular bone in three different cases respects to its morphological indices to investigate correlation between fatigue life and bone morphology. On-axis and off-axis load effects are considered to determine trabecular yielding which is a main cause of failure. Once load impose as on-axis on trabecular, fatigue failure occur in high cycles (> 12226), however, off-axis load, which may impose on trabecular with 45 degree or perpendicularly cause drastically decrease of trabecular life. The most failure occurs in arc and rod-like trabecular and S-N curve for axial compression load were performed based on CoffinManson equation. Results had shown that with 20.2% loss of volume fraction (BV/TV) and 15.8% loss of surface density (BS/TV) fatigue life of trabecular bone by axial compression load decrease to 63.6%.

References

Burr, D.B., et al. (1997). Bone Microdamage and Skeletal Fragility in Osteoporotic and Stress Fractures. Journal of Bone and Mineral Research, 12(1), 6-15.

Muir, P., K.A. Johnson, and C.P. Ruaux-Mason (1999). In vivo matrix microdamage in a naturally occurring canine fatigue fracture. Bone. 25(5), 571-576.

Schaffler, M.B., K. Choi, and C. Milgrom, (1995). Aging and matrix microdamage accumulation in human compact bone. Bone. 17(6), 521-525.

Dendorfer, S., H.J. Maier, and J. Hammer. (2009). Fatigue damage in cancellous bone: an experimental approach from continuum to micro scale. J Mech Behav Biomed Mater, 2(1),

-9.

Carter, D.R. (1981). Uniaxial fatigue of human cortical bone. The influence of tissue physical characteristics. Journal of Biomechanics, 14(7), 461-470.

George, W.T. and D. Vashishth (2006). Susceptibility of aging human bone to mixed-mode fracture increases bone fragility. Bone, 38(1), 105-111.

O’Brien, F.J., D. Taylor, and T.C. Lee (2003). Microcrack accumulation at different intervals during fatigue testing of compact bone. Journal of Biomechanics, 36(7), 973-980.

Yeni, Y.N., et al., (2009). Human cancellous bone from T12-L1 vertebrae has unique microstructural and trabecular shear stress properties. Bone, 44(1), 130-6.

Moore, T.L.A., F.J. O’Brien, and L.J. Gibson (2004). Creep Does Not Contribute to Fatigue in Bovine Trabecular Bone. Journal of Biomechanical Engineering, 126(3), 321-329.

Bevill, G., F. Farhamand, and T.M. Keaveny, (2009). Heterogeneity of yield strain in lowdensity versus high-density human trabecular bone. Journal of Biomechanics, 42(13), 2165-

Hulme, P.A., S.K. Boyd, and S.J. Ferguson, (2007). Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength. Bone, 2007. 41(6), 946-957.

Bevill, G., et al., (2006). Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone. Bone, 39(6), 1218-1225.

Nazarian, A., et al., (2006). The interaction of microstructure and volume fraction in predicting failure in cancellous bone. Bone, 39(6), 1196-1202.

Dendorfer, S., H.J. Maier, and J. Hammer, (2009). Fatigue damage in cancellous bone: An experimental approach from continuum to micro scale. Journal of the Mechanical Behavior of

Biomedical Materials, 2(1), 113-119.

Taylor, M., J. Cotton, and P. Zioupos, (2002). Finite Element Simulation of the Fatigue Behaviour of Cancellous Bone. Meccanica, 37(4-5), 419-429.

Moore, T.L.A. and L.J. Gibson, (2004). Fatigue of Bovine Trabecular Bone. Journal of Biomechanical Engineering, 125(6), 761-768.

Gronkiewicz, K., et al., (2009). Experimental research on the possibilities of maintaining thermal conditions within the limits of the physiological conditions during intraoral preparation

of dental implants. Journal of Physiology and Pharmacology, 60 (8), 123-7.

Shim, V.P.W., et al., (2005). Characterisation of the dynamic compressive mechanical properties of cancellous bone from the human cervical spine. International Journal of Impact Engineering, 32(1-4), 525-540.

Grimm, M.J. and J.L. Williams, (1997). Measurements of permeability in human calcaneal trabecular bone. Journal of Biomechanics, 30(7), 743-745.

Kohles, S.S., et al., (2001). Direct perfusion measurements of cancellous bone anisotropic permeability. Journal of Biomechanics, 34(9), 1197-1202.

Nauman, E.A., K.E. Fong, and T.M. Keaveny, (1999). Dependence of Intertrabecular Permeability on Flow Direction and Anatomic Site. Annals of Biomedical Engineering, 27(4),

-524.

Baroud, G., et al., (2004). Experimental and theoretical investigation of directional permeability of human vertebral cancellous bone for cement infiltration. Journal of Biomechanics, 37(2), 189-196.

Rapillard, L., M. Charlebois, and P.K. Zysset, (2006). Compressive fatigue behavior of human vertebral trabecular bone. Journal of Biomechanics, 39(11), 2133-2139.

van Lenthe, G.H., M. Stauber, and R. Müller, (2006). Specimen-specific beam models for fast and accurate prediction of human trabecular bone mechanical properties. Bone, 39(6), 1182-1189.

Teo, J.C.M., et al., (2007). Correlation of cancellous bone microarchitectural parameters from microCT to CT number and bone mechanical properties. Materials Science and Engineering:

C, 27(2), 333-339.

Burgers, T.A., et al., (2008). Compressive properties of trabecular bone in the distal femur. Journal of Biomechanics, 41(5): p. 1077-1085.

Bajuri, M., et al., (2013). Biomechanical analysis of the wrist arthroplasty in rheumatoid arthritis: a finite element analysis. Medical & biological engineering & computing, 51(1-2),

-186.

Bayraktar, H.H., et al., (2004). Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. Journal of Biomechanics, 37(1), 27-35.

Zhou, B., et al., (2014). Dependence of mechanical properties of trabecular bone on plate–rod microstructure determined by individual trabecula segmentation (ITS). Journal of Biomechanics, 47(3), 702-708.

Dendorfer, S., et al., (2008). Anisotropy of the fatigue behaviour of cancellous bone. Journal of Biomechanics, 41(3), 636-641.

Downloads

Published

2018-04-01

How to Cite

Mostakhdemin, M., Fatihhi S.J, F. S., Harun, M. N., & Syahrom, A. (2018). NUMERICAL ANALYSIS ON FATIGUE LIFE PREDICTION OF CANCELLOUS BONE RESPECT TO NORMAL WALKING LOADING. Jurnal Mekanikal, 38(1). Retrieved from https://jurnalmekanikal.utm.my/index.php/jurnalmekanikal/article/view/27

Issue

Section

Mechanical

Similar Articles

<< < 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.