• Bassey Samuel Ahmadu Bello University
  • Malachy Sumaila Ahmadu Bello University
  • Bashar Dan-Asabe Ahmadu Bello University


Water Absorption, Cellulosic Fibers, Optimization, Taguchi


The manufacturing process of a material is a strong determinant of its performance in service. Different applications like ships, wind turbine blades, oil rigs, etc demand materials with low water absorption due to their operational environment. Previous studies have reported the water absorption behavior of cellulosic fiber-reinforced composites but the optimization of the water absorption properties of pineapple leaf/glass fiber hybrid reinforced epoxy composites by optimizing its manufacturing parameters have not been studied even with its possible wide range of application. This paper presents the optimization of the water absorption properties of a material PxGyEz (with x, y, and z representing the volume fraction of pineapple leaf fiber (PALF) (P), the volume fraction of glass fiber (G), and fiber length respectively in an epoxy matrix) using the Taguchi robust optimization technique and statistical analysis. The material at x=15%, y=15%, and z=20mm which is, P15G15E20 was the optimum having the lowest water absorption of 0.2667%. A notable observation was that fiber length had a significant contribution to the water absorption properties of the material. The interaction effect of fiber length with the cellulosic fiber and the glass fiber at mean values was found to be 49.37% and 14.24% respectively. SEM and FTIR analysis showed microstructural and chemical formations that explained the water absorption behavior of the optimized hybrid composite. The water absorption property of the material was modeled and the equations proved to be 95.6% accurate in predicting the water absorption of the material at different combinations.


Aabdul Khalil, H. P. S., Kang, C. W., Khairul, A., Ridzuan, R., & Adawi, T. O. (2009). The effect of different laminations on mechanical and physical properties of hybrid composites. Journal of Reinforced Plastics and Composites, 28(9), 1123-1137.

Abifarin, J. K. (2021). Taguchi grey relational analysis on the mechanical properties of natural hydroxyapatite: effect of sintering parameters. The International Journal of Advanced Manufacturing Technology, 1-9.

Abifarin, J. K., Obada, D. O., Dauda, E. T., & Dodoo-Arhin, D. (2019). Experimental data on the characterization of hydroxyapatite synthesized from biowastes. Data in brief, 26, 104485.

Abifarin, J. K., Olubiyi, D. O., Dauda, E. T., & Oyedeji, E. O. (2021a). Taguchi grey relational optimization of the multi-mechanical characteristics of kaolin reinforced hydroxyapatite: effect of fabrication parameters. International Journal of Grey Systems, 1(2), 20-32.

Abifarin, J. K., Prakash, C., & Singh, S. (2021b). Optimization and significance of fabrication parameters on the mechanical properties of 3D printed chitosan/PLA scaffold. Materials Today: Proceedings.

Abifarin, J. K., Suleiman, M. U., Abifarin, E. A., Fidelis, F. B., Oyelakin, O. K., Jacob, D. I., & Abdulrahim, M. Y. (2021c). Fabrication of mechanically enhanced hydroxyapatite scaffold with the assistance of numerical analysis. The International Journal of Advanced Manufacturing Technology, 1-14.

Agrebi, F., Hammami, H., Asim, M., Jawaid, M., & Kallel, A. (2020). Impact of silane treatment on the dielectric properties of pineapple leaf/kenaf fiber reinforced phenolic composites. Journal of Composite Materials, 54(7), 937-946.

Alhijazi, M., Safaei, B., Zeeshan, Q., Asmael, M., Eyvazian, A., & Qin, Z. (2020). Recent developments in luffa natural fiber composites. Sustainability, 12(18), 7683.

Alsubari, S., Zuhri, M. Y. M., Sapuan, S. M., Ishak, M. R., Ilyas, R. A., & Asyraf, M. R. M. (2021). Potential of natural fiber reinforced polymer composites in sandwich structures: A review on its mechanical properties. Polymers, 13(3), 423.

Annappa, A. R., Basavarajappa, S., & Davim, J. P. (2021). Effect of organoclays on mechanical properties of glass fiber-reinforced epoxy nanocomposite. Polymer Bulletin, 1-19.

Ansari, M. T. A., Singh, K. K., & Azam, M. S. (2018). Fatigue damage analysis of fiber-reinforced polymer composites—A review. Journal of Reinforced Plastics and Composites, 37(9), 636-654.

Aronica, P. G., Reid, L. M., Desai, N., Li, J., Fox, S. J., Yadahalli, S., ... & Verma, C. S. (2021). Computational Methods and Tools in Antimicrobial Peptide Research. Journal of Chemical Information and Modeling.

Ashik, K. P., Sharma, R. S., & Guptha, V. J. (2018). Investigation of moisture absorption and mechanical properties of natural/glass fiber reinforced polymer hybrid composites. Materials Today: Proceedings, 5(1), 3000-3007.

Asim, M., Abdan, K., Jawaid, M., Nasir, M., Dashtizadeh, Z., Ishak, M. R., Hoque, M. E. (2015) A Review on Pineapple Leaves Fibre and Its Composites. International Journal of Polymer Science. Volume 2015, Article ID 950567, 16 pages. http://dx.doi.org/10.1155/2015/950567

Ba, P., P Shetty, B., & Singh Yadav, S. P. (2020). Physical and mechanical properties, morphological behaviour of pineapple leaf fibre reinforced polyester resin composites. Advances in Materials and Processing Technologies, 1-13.

Bachchan, A. A., Das, P. P., & Chaudhary, V. (2021). Effect of moisture absorption on the properties of natural fiber reinforced polymer composites: A review. Materials Today: Proceedings.

Bahl, S. (2021). Fiber reinforced metal matrix composites-a review. Materials Today: Proceedings, 39, 317-323.

Berretta, S., Davies, R., Shyng, Y. T., Wang, Y., & Ghita, O. (2017). Fused Deposition Modelling of high temperature polymers: Exploring CNT PEEK composites. Polymer Testing, 63, 251-262.

Bhagat, V. K., Biswas, S., & Dehury, J. (2014). Physical, mechanical, and water absorption behavior of coir/glass fiber reinforced epoxy based hybrid composites. Polymer Composites, 35(5), 925-930.

Carr, S. A. (2017). Sources and dispersive modes of micro‐fibers in the environment. Integrated environmental assessment and management, 13(3), 466-469.

Cenci, M. P., Scarazzato, T., Munchen, D. D., Dartora, P. C., Veit, H. M., Bernardes, A. M., & Dias, P. R. (2021). Eco‐Friendly Electronics—A Comprehensive Review. Advanced Materials Technologies, 2001263.

Chavhan, G. R., & Wankhade, L. N. (2020). Improvement of the mechanical properties of hybrid composites prepared by fibers, fiber-metals, and nano-filler particles–A review. Materials Today: Proceedings, 27, 72-82.

Chen, J., & Zhang, L. (2021). A survey and systematic assessment of computational methods for drug response prediction. Briefings in bioinformatics, 22(1), 232-246.

Dayo, A. Q., Babar, A. A., Qin, Q. R., Kiran, S., Wang, J., Shah, A. H., ... & Liu, W. B. (2020). Effects of accelerated weathering on the mechanical properties of hemp fiber/polybenzoxazine based green composites. Composites Part A: Applied Science and Manufacturing, 128, 105653.

Devaraju, A., Sivasamy, P., & Loganathan, G. B. (2020). Mechanical properties of polymer composites with ZnO nano-particle. Materials Today: Proceedings, 22, 531-534.

Dutt, M. A., Hanif, M. A., Nadeem, F., & Bhatti, H. N. (2020). A review of advances in engineered composite materials popular for wastewater treatment. Journal of Environmental Chemical Engineering, 8(5), 104073.

Eslahi, N., Mahmoodi, A., Mahmoudi, N., Zandi, N., & Simchi, A. (2020). Processing and properties of nanofibrous bacterial cellulose-containing polymer composites: a review of recent advances for biomedical applications. Polymer Reviews, 60(1), 144-170.

Fan, M., Dai, D., Huang, B. (2012) Fourier transform infrared spectroscopy for natural fibers. Fourier Transform - MaterAnal, http://dx.doi.org/10.5772/35482.

Feng, P., Ma, L., Wu, G., Li, X., Zhao, M., Shi, L., ... & Song, G. (2020). Establishment of multistage gradient modulus intermediate layer between fiber and matrix via designing double “rigid-flexible” structure to improve interfacial and mechanical properties of carbon fiber/resin composites. Composites Science and Technology, 200, 108336.

Fernandes Medeiros de Queiroz, H., Banea, M. D., Kioshi Kawasaki Cavalcanti, D., & de Souza e Silva Neto, J. (2021). The effect of multiscale hybridization on the mechanical properties of natural fiber‐reinforced composites. Journal of Applied Polymer Science, 51213.

Friedrich, K. (2018). Polymer composites for tribological applications. Advanced Industrial and Engineering Polymer Research, 1(1), 3-39.

Geremew, A., De Winne, P., Adugna, T., & De Backer, H. (2021). An Overview of the Characterization of Natural Cellulosic Fibers. In Key Engineering Materials (Vol. 881, pp. 107-116). Trans Tech Publications Ltd.

Gholampour, A., & Ozbakkaloglu, T. (2020). A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. Journal of Materials Science, 55(3), 829-892.

Gopalraj, S. K., & Kärki, T. (2020). A review on the recycling of waste carbon fibre/glass fibre-reinforced composites: fibre recovery, properties and life-cycle analysis. SN Applied Sciences, 2(3), 1-21.

Hoque, M. B., Mollah, M. Z. I., Faruque, M. R. I., Hannan, M. A., & Khan, R. A. (2021). Review on the Mechanical Properties of Pineapple Leaf Fiber (PALF) Reinforced Epoxy Resin Based Composites. Polymer, 14(15), 16-17.

Huang, J., Li, Z., Zhang, J., Zhang, Y., Ge, Y., & Cui, X. (2020). In-situ synchronous carbonation and self-activation of biochar/geopolymer composite membrane: Enhanced catalyst for oxidative degradation of tetracycline in water. Chemical Engineering Journal, 397, 125528.

Jeyapragash, R., Srinivasan, V., & Sathiyamurthy, S. J. M. T. P. (2020). Mechanical properties of natural fiber/particulate reinforced epoxy composites–A review of the literature. Materials Today: Proceedings, 22, 1223-1227.

Jovanović, M., Živić, M., & Milosavljević, M. (2021). A potential application of materials based on a polymer and CAD/CAM composite resins in prosthetic dentistry. Journal of Prosthodontic Research, 65(2), 137-147.

Karna, S. K., & Sahai, R. (2012). An overview on Taguchi method. International journal of engineering and mathematical sciences, 1(1), 1-7.

Karthi, N., Kumaresan, K., Sathish, S., Gokulkumar, S., Prabhu, L., & Vigneshkumar, N. (2020). An overview: Natural fiber reinforced hybrid composites, chemical treatments and application areas. Materials today: proceedings, 27, 2828-2834.

Keerthi Gowda, B. S., Naresh, K., Ilangovan, S., Sanjay, M. R., & Siengchin, S. (2021). Effect of Fiber Volume Fraction on Mechanical and Fire Resistance Properties of Basalt/Polyester and Pineapple/Polyester Composites. Journal of Natural Fibers, 1-15.

Kengkhetkit, N., Wongpreedee, T., & Amornsakchai, T. (2018). Pineapple leaf fiber: from waste to high-performance green reinforcement for plastics and rubbers. In Lignocellulosic composite materials (pp. 271-291). Springer, Cham.

Kepir, Y., Gunoz, A., & Memduh, K. A. R. A. (2021). Effects of environmental conditions on the mechanical properties of composite materials. Advanced Engineering Journal, 1(1), 21-25.

Kerni, L., Singh, S., Patnaik, A., & Kumar, N. (2020). A review on natural fiber reinforced composites. Materials Today: Proceedings, 28, 1616-1621.

Kumar, P. S. S., & Allamraju, K. V. (2019). A review of natural fiber composites [Jute, Sisal, Kenaf]. Materials Today: Proceedings, 18, 2556-2562.

Kumar, S. S. (2020). Dataset on mechanical properties of natural fiber reinforced polyester composites for engineering applications. Data in brief, 28, 105054.

Kuo, C. F. J., Huang, C. C., & Yang, C. H. (2021). Integration of multivariate control charts and decision tree classifier to determine the faults of the quality characteristic (s) of a melt spinning machine used in polypropylene as-spun fiber manufacturing Part I: The application of the Taguchi method and principal component analysis in the processing parameter optimization of the melt spinning process. Textile Research Journal, 0040517520988615.

Kushwaha, P. K., & Kumar, R. (2010). The studies on performance of epoxy and polyester-based composites reinforced with bamboo and glass fibers. Journal of Reinforced Plastics and Composites, 29(13), 1952-1962.

Lee, C. H., Khalina, A., & Lee, S. H. (2021). Importance of interfacial adhesion condition on characterization of plant-fiber-reinforced polymer composites: a review. Polymers, 13(3), 438.

Li, M., Pu, Y., Thomas, V. M., Yoo, C. G., Ozcan, S., Deng, Y., ... & Ragauskas, A. J. (2020). Recent advancements of plant-based natural fiber–reinforced composites and their applications. Composites Part B: Engineering, 108254.

Li, X., Wang, Y., Chu, C., Han, L., Bai, J., & Xue, F. (2020). A study on Mg wires/poly-lactic acid composite degradation under dynamic compression and bending load for implant applications. Journal of the mechanical behavior of biomedical materials, 105, 103707.

Liu, T., Liu, X., & Feng, P. (2020). A comprehensive review on mechanical properties of pultruded FRP composites subjected to long-term environmental effects. Composites Part B: Engineering, 191, 107958.

Lv, Y., Xu, P., Ren, G., Chen, F., Nan, H., Liu, R., ... & Chen, Z. K. (2018). Low-temperature atomic layer deposition of metal oxide layers for perovskite solar cells with high efficiency and stability under harsh environmental conditions. ACS applied materials & interfaces, 10(28), 23928-23937.

Mahato, K. K., Dutta, K., & Ray, B. C. (2018). Static and dynamic behavior of fibrous polymeric composite materials at different environmental conditions. Journal of Polymers and the Environment, 26(3), 1024-1050.

Mahir, F. I., Keya, K. N., Sarker, B., Nahiun, K. M., & Khan, R. A. (2019). A brief review on natural fiber used as a replacement of synthetic fiber in polymer composites. Materials Engineering Research, 1(2), 86-97.

Meenakshi, C. M., & Krishnamoorthy, A. (2019). Study on the effect of surface modification on the mechanical and thermal behaviour of flax, sisal and glass fiber-reinforced epoxy hybrid composites. Journal of Renewable Materials, 7(2), 153-169.

Mirabedini, A., Ang, A., Nikzad, M., Fox, B., Lau, K. T., & Hameed, N. (2020). Evolving strategies for producing multiscale graphene‐enhanced fiber‐reinforced polymer composites for smart structural applications. Advanced Science, 7(11), 1903501.

Mirabedini, A., Ang, A., Nikzad, M., Fox, B., Lau, K. T., & Hameed, N. (2020). Evolving strategies for producing multiscale graphene‐enhanced fiber‐reinforced polymer composites for smart structural applications. Advanced Science, 7(11), 1903501.

Mittal, M., & Chaudhary, R. (2018). Development of PALF/Glass and COIR/Glass fiber reinforced hybrid epoxy composites. J. Mater. Sci. Surf. Eng, 6(5), 851-861.

Mulenga, T. K., Ude, A. U., & Vivekanandhan, C. (2021). Techniques for Modelling and Optimizing the Mechanical Properties of Natural Fiber Composites: A Review. Fibers, 9(1), 6.

Mulenga, T. K., Ude, A. U., & Vivekanandhan, C. (2021). Techniques for Modelling and Optimizing the Mechanical Properties of Natural Fiber Composites: A Review. Fibers, 9(1), 6.

Nagaraj, N., Balasubramaniam, S., Venkataraman, V., Manickam, R., Nagarajan, R., & Oluwarotimi, I. S. (2020). Effect of cellulosic filler loading on mechanical and thermal properties of date palm seed/vinyl ester composites. International journal of biological macromolecules, 147, 53-66.

Narayana, V. L., & Rao, L. B. (2021). A brief review on the effect of alkali treatment on mechanical properties of various natural fiber reinforced polymer composites. Materials Today: Proceedings.

Ngo, T. D. (2018). Natural fibers for sustainable bio-composites. Natural and artificial fiber-reinforced composites as renewable sources, 107-126.

Nguyen, A. T., Parker, L., Brennan, L., & Lockrey, S. (2020). A consumer definition of eco-friendly packaging. Journal of Cleaner Production, 252, 119792.

Njoku, C. E., Alaneme, K. K., Omotoyinbo, J. A., & Daramola, M. O. (2019). Natural fibers as viable sources for the development of structural, semi-structural and technological materials–A review. Advanced Materials Letters, 10(10), 682-94.

Nurazzi, N. M., Khalina, A., Sapuan, S. M., & Rahmah, M. (2018). Development of sugar palm yarn/glass fibre reinforced unsaturated polyester hybrid composites. Materials Research Express, 5(4), 045308.

Ovalı, S., & Sancak, E. (2020). Investigation of mechanical properties of jute fiber reinforced low density polyethylene composites. Journal of Natural Fibers, 1-18.

Perović, K., Kovačić, M., Kušić, H., Štangar, U. L., Fresno, F., Dionysiou, D. D., & Loncaric Bozic, A. (2020). Recent achievements in development of TiO2-based composite photocatalytic materials for solar driven water purification and water splitting. Materials, 13(6), 1338.

Petroudy, S. D. (2017). Physical and mechanical properties of natural fibers. In Advanced high strength natural fibre composites in construction (pp. 59-83). Woodhead Publishing.

Potluri, R. (2019). Natural fiber-based hybrid bio-composites: processing, characterization, and applications. In Green Composites (pp. 1-46). Springer, Singapore.

Radoor, S., Karayil, J., Rangappa, S. M., Siengchin, S., & Parameswaranpillai, J. (2020). A review on the extraction of pineapple, sisal and abaca fibers and their use as reinforcement in polymer matrix. Express Polymer Letters, 14(4), 309-335.

Rahman, R., & Mustapa, N. R. (2021). Water Absorption Properties of Natural Fibres Reinforced PLA Bio-Composite. In Biocomposite Materials (pp. 251-271). Springer, Singapore.

Rajak, D. K., Pagar, D. D., Menezes, P. L., & Linul, E. (2019). Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers, 11(10), 1667.

Rajeshkumar, G., Ramakrishnan, S., Pugalenthi, T., & Ravikumar, P. (2020). Performance of surface modified pineapple leaf fiber and its applications. In Pineapple leaf fibers (pp. 309-321). Springer, Singapore.

Rangappa, S. M., Siengchin, S., & Dhakal, H. N. (2020). Green-composites: Ecofriendly and sustainability. Applied Science and Engineering Progress, 13(3), 183-184.

Ravindran, D., SR, S. B., Padma, S. R., Indran, S., & Divya, D. (2020). Characterization of natural cellulosic fiber extracted from Grewia damine flowering plant's stem. International Journal of Biological Macromolecules, 164, 1246-1255.

Raza, S. H., Zaman, U., Iftikhar, M., & Shafique, O. (2021). An Experimental Evidence on Eco-Friendly Advertisement Appeals and Intention to Use Bio-Nanomaterial Plastics: Institutional Collectivism and Performance Orientation as Moderators. International Journal of Environmental Research and Public Health, 18(2), 791.

Rohan, T., Tushar, B., & Mahesha, G. T. (2018). Review of natural fiber composites. In IOP Conference Series: Materials Science and Engineering (Vol. 314, No. 1, p. 012020). IOP Publishing.

Rubino, F., Nisticò, A., Tucci, F., & Carlone, P. (2020). Marine application of fiber reinforced composites: a review. Journal of Marine Science and Engineering, 8(1), 26.

Sadasivuni, K. K., Saha, P., Adhikari, J., Deshmukh, K., Ahamed, M. B., & Cabibihan, J. J. (2020). Recent advances in mechanical properties of biopolymer composites: A review. Polymer Composites, 41(1), 32-59.

Saha, A., Kumar, S., & Kumar, A. (2021). Influence of pineapple leaf particulate on mechanical, thermal and biodegradation characteristics of pineapple leaf fiber reinforced polymer composite. Journal of Polymer Research, 28(2), 1-23.

Saleem, A., Medina, L., & Skrifvars, M. (2020). Mechanical performance of hybrid bast and basalt fibers reinforced polymer composites. Journal of Polymer Research, 27(3), 1-13.

Saman, N. M., Ahmad, M. H., & Buntat, Z. (2021). Application of Cold Plasma in Nanofillers Surface Modification for Enhancement of Insulation Characteristics of Polymer Nanocomposites: A Review. IEEE Access.

Samuel, B. O., Sumaila, M., & Dan-Asabe, B. (2021). Manufacturing of a natural fiber/glass fiber hybrid reinforced polymer composite (PxGyEz) for high flexural strength: an optimization approach. The International Journal of Advanced Manufacturing Technology, 1-12.

Samuel, B. O., Sumaila, M., & Dan-asabe, B. (2021). Modeling and optimization of the manufacturing parameters of a hybrid fiber reinforced polymer composite PxGyEz. The International Journal of Advanced Manufacturing Technology, 1–12.

Sari, N. H., Suteja, S., Ilyas, R. A., Syafri, E., & Indra, S. (2021). Characterization of the density and mechanical properties of corn husk fiber reinforced polyester composites after exposure to ultraviolet light. Functional Composites and Structures.

Saroia, J., Wang, Y., Wei, Q., Lei, M., Li, X., Guo, Y., & Zhang, K. (2020). A review on 3D printed matrix polymer composites: its potential and future challenges. The International Journal of Advanced Manufacturing Technology, 106(5), 1695-1721.

Senthamaraikannan P, Sanjay MR, Bhat KS, Padmaraj NH, Jawaid M. (2018) Characterization of natural cellulosic fiber from bark of Albiziaamara. J Nat Fibers. 0:1–8,http://dx.doi.org/10.1080/15440478.2018.1453432.

Senthilkumar, K., Saba, N., Chandrasekar, M., Jawaid, M., Rajini, N., Siengchin, S., ... & Al-Lohedan, H. A. (2021). Compressive, dynamic and thermo-mechanical properties of cellulosic pineapple leaf fibre/polyester composites: Influence of alkali treatment on adhesion. International Journal of Adhesion and Adhesives, 106, 102823.

Sethi, S., & Ray, B. C. (2015). Environmental effects on fiber-reinforced polymeric composites: Evolving reasons and remarks on interfacial strength and stability. Advances in colloid and interface science, 217, 43-67.

Shim, H., Kim, T., & Choi, G. (2019). Technology roadmap for eco-friendly building materials industry. Energies, 12(5), 804.

Su, X., Wang, J., Zhang, X., Huo, S., Chen, W., Dai, W., & Zhang, B. (2020). One-step preparation of CoFe2O4/FeCo/graphite nanosheets hybrid composites with tunable microwave absorption performance. Ceramics International, 46(8), 12353-12363.

Sun, Q., Meng, Z., Zhou, G., Lin, S. P., Kang, H., Keten, S., ... & Su, X. (2018). Multi-scale computational analysis of unidirectional carbon fiber reinforced polymer composites under various loading conditions. Composite Structures, 196, 30-43.

Syduzzaman, M., Al Faruque, M. A., Bilisik, K., & Naebe, M. (2020). Plant-based natural fibre reinforced composites: A review on fabrication, properties and applications. Coatings, 10(10), 973.

Taguchi, G., & Cariapa, V. (1993). Taguchi on robust technology development.

Tang, X., & Yan, X. (2020). A review on the damping properties of fiber reinforced polymer composites. Journal of Industrial Textiles, 49(6), 693-721.

Thyavihalli Girijappa, Y. G., Mavinkere Rangappa, S., Parameswaranpillai, J., & Siengchin, S. (2019). Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review. Frontiers in Materials, 6, 226.

Todkar, S. S., & Patil, S. A. (2019). Review on mechanical properties evaluation of pineapple leaf fibre (PALF) reinforced polymer composites. Composites Part B: Engineering, 174, 106927.

Tongphang, C., Hajjar, S., Mougin, K., & Amornsakchai, T. (2019). Improving the adhesion between pineapple leaf fiber and natural rubber by using urea formaldehyde resin. In Key Engineering Materials (Vol. 824, pp. 107-113). Trans Tech Publications Ltd.

Velmurugan, R., & Manikandan, V. (2007). Mechanical properties of palmyra/glass fiber hybrid composites. Composites Part A: applied science and manufacturing, 38(10), 2216-2226.

Venkatarajan, S., Subbu, C., Athijayamani, A., & Muthuraja, R. (2021). Mechanical properties of natural cellulose fibers reinforced polymer composites–2015–2020: A review. Materials Today: Proceedings.

Venkateshwaran, N., ElayaPerumal, A., & Jagatheeshwaran, M. S. (2011). Effect of fiber length and fiber content on mechanical properties of banana fiber/epoxy composite. Journal of Reinforced Plastics and Composites, 30(19), 1621-1627.

Wang, D., Yue, Y., Wang, Q., Cheng, W., & Han, G. (2020). Preparation of cellulose acetate-polyacrylonitrile composite nanofibers by multi-fluid mixing electrospinning method: Morphology, wettability, and mechanical properties. Applied Surface Science, 510, 145462.

Yan, W. (2021). Computational methods for deep learning. Heidelberg: Springer.

Yashas Gowda, T. G., Sanjay, M. R., Subrahmanya Bhat, K., Madhu, P., Senthamaraikannan, P., & Yogesha, B. (2018). Polymer matrix-natural fiber composites: An overview. Cogent Engineering, 5(1), 1446667.

Ye, J., Wang, Y., Li, Z., Saafi, M., Jia, F., Huang, B., & Ye, J. (2020). Failure analysis of fiber-reinforced composites subjected to coupled thermo-mechanical loading. Composite Structures, 235, 111756.

Zhang, C. W., Nair, S. S., Chen, H., Yan, N., Farnood, R., & Li, F. Y. (2020). Thermally stable, enhanced water barrier, high strength starch bio-composite reinforced with lignin containing cellulose nanofibrils. Carbohydrate polymers, 230, 115626.

Zheng, Y., Chen, L., Wang, X., & Wu, G. (2020). Modification of renewable cardanol onto carbon fiber for the improved interfacial properties of advanced polymer composites. Polymers, 12(1), 45.

Zin, M. H., Abdan, K., Mazlan, N., Zainudin, E. S., & Liew, K. E. (2018). The effects of alkali treatment on the mechanical and chemical properties of pineapple leaf fibres (PALF) and adhesion to epoxy resin. In IOP Conference Series: Materials Science and Engineering (Vol. 368, No. 1, p. 012035). IOP Publishing.




How to Cite

Samuel, B., Sumaila, M., & Dan-Asabe, B. (2022). CELLULOSIC FIBER REINFORCED HYBRID COMPOSITE (PxGyEz) OPTIMIZATION FOR LOW WATER ABSORPTION USING THE ROBUST TAGUCHI OPTIMIZATION TECHNIQUE. Jurnal Mekanikal, 45(01), 1–20. Retrieved from https://jurnalmekanikal.utm.my/index.php/jurnalmekanikal/article/view/432