SMART SHOE: PORTABLE GAIT MONITORING SYSTEM UTILIZING INERTIAL MEASUREMENT UNIT (IMU)

Authors

  • Muhammad Iqbal Tarmizi School of Mechanical Engineering, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, Kampus Permatang Pauh, 13500 Permatang Pauh Pulau Pinang, Malaysia
  • Aminuddin Hamid School of Mechanical Engineering, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, Kampus Permatang Pauh, 13500 Permatang Pauh Pulau Pinang, Malaysia
  • Ya’akob Yusof School of Mechanical Engineering, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, Kampus Permatang Pauh, 13500 Permatang Pauh Pulau Pinang, Malaysia

DOI:

https://doi.org/10.11113/jm.v48.561

Keywords:

IMU, gait analysis, monitoring system.

Abstract

Gait analysis is a principal element to the field of biomechanics, with its application in sport, rehabilitation and correction of biomechanical dysfunctions to upgrade the quality of life. Complex gait analysis system, while important for human rehabilitation, often relies on expensive and high technology equipment like 3D optical monitoring device and force plate. This study presents the development of a portable, affordable gait monitoring system using MPU6050 Inertial Measurement Unit (IMU) and ESP32 microcontroller. The system is integrated into a Smart Shoe, utilising a gyroscope within the MPU6050 sensor to capture ankle angle data. Healthy participants were selected and ankle angle data were recorded in real-time during walking trials. The ankle angle data were wirelessly transmitted to a smartphone through Blynk application. Results demonstrate that the Smart Shoe system is capable of detecting gait phases based on the collected ankle angle data which produce consistent gait pattern during normal walking condition. Despite its affordable price, it can produce result that is comparable with other wearable sensor device, offering a solution for broader application in rehabilitation and disease detection.

References

MOT Ministry of Transport Malaysia Official Portal Malaysia Road Fatalities Index. [(accessed on 5 August 2024)]; Available online: https://www.mot.gov.my/en/land/safety/malaysia-road-fatalities-index

Harvey, L.A. (2016). Physiotherapy rehabilitation for people with spinal cord injuries. Journal of Physiotherapy, 62 (1), 4–11

Prasanth, H., Caban, M., Keller, U., Courtine, G., Ijspeert, A., Vallery, H., & Zitzewitz, J. (2021). Wearable sensor-based real-time gait detection: A systematic review. Sensors, 21(8), 2727.

Nikkhoo, M., Wang, L., Hsu, C., & Cheng, C. (2023). Editorial: Advancements in biomechanical modeling of injuries, diseases, diagnoses, and treatments of lower extremities. Frontiers in Bioengineering and Biotechnology, 11.

Vaughan, C. L. (1992). Dynamics of Human Gait. Human Kinetics. 978-0873223683

Abinaya B., Latha V., & Suchetha M. (2012). An advanced gait monitoring system based on air pressure sensor embedded in a shoe. Procedia Engineering, 38(3): 1634–1643

Aminuddin H., Siti A. M. Z., Norheliena A., Nurul. M. M. N., & Yaakob Y. (2023). Development of portable smart shoe for walking monitoring purpose. AIP Conf. Proc., 2746 (1), 050002.

Zhou, H., & Hu, H. (2008). Human motion tracking for rehabilitation - A survey. Biomedical Signal Processing and Control, 3(1): p. 1-18.

Benson, L., Clermont, C., Bošnjak, E., & Ferber, R. (2018). The use of wearable devices for walking and running gait analysis outside of the lab: A systematic review. Gait & Posture, 63, 124-138.

Hutabarat, Y., Owaki, D., & Hayashibe, M. (2021). Recent Advances in Quantitative Gait Analysis Using Wearable Sensors: A Review. IEEE Sensors Journal, 21(23), 26470-26487

Sabatini, A. M. (2011). Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing. Sensors, 11(2): 1489-1525.

Mariani, B., Hoskovec, C., Rochat, S., Büla, C., Penders, J., & Aminian, K. (2010). 3D gait assessment in young and elderly subjects using foot-worn inertial sensors. Journal of Biomechanics, 43(15): 2999-3006.

Tao, W., Liu, T., Zheng, R., & Feng, H. (2012). Gait analysis using wearable sensors. Sensors, 12(2): 2255-2283.

Jasiewicz, J. M., Allum, J. H., Middleton, J. W., Barriskill, A., Condie, P., Purcell, B., & Li, R. C. (2006). Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals. Gait & Posture, 24(4): 502-509.

Hausdorff, J. M., Rios, D. A., & Edelberg, H. K. (2001). Gait variability and fall risk in community-living older adults: A 1-year prospective study. Archives of Physical Medicine and Rehabilitation, 82(8): 1050-1056.

Salarian, A., Russmann, H., Vingerhoets, F. J., Dehollain, C., Blanc, Y., Burkhard, P. R., & Aminian, K. (2004). Quantitative gait assessment in Parkinson’s disease: Toward an ambulatory system for long-term monitoring. IEEE Transactions on Biomedical Engineering, 51(8): 1438-1444.

Bergamini, E., Picerno, P., Pillet, H., Natta, F., Thoreux, P., & Camomilla, V. (2012). Estimation of temporal gait parameters using a single inertial measurement unit: Validation on normal subjects and Parkinsonian patients. Sensors, 12(7): 8683-8699.

Tan, T., Chiasson, D. P., Hu, H., & Shull, P. B. (2019). Influence of IMU position and orientation placement errors on ground reaction force estimation. Journal of biomechanics, 97, 109416.

Zrenner, M., Küderle, A., Roth, N., Jensen, U., Dümler, B., & Eskofier, B. M. (2020). Does the Position of Foot-Mounted IMU Sensors Influence the Accuracy of Spatio-Temporal Parameters in Endurance Running?. Sensors (Basel, Switzerland), 20(19), 5705.

Zhao H, Shang H, Wang Z, & Jiang M. (2011). Comparison of initial alignment methods for SINS. World Congress on Intelligent Control and Automation (WCICA '11), Taipei, Taiwan

Zhao, H., Qiu, S., Wang, Z., Yang, N., Li, J., & Wang, J. (2020). Applications of MEMS Gyroscope for Human Gait Analysis. IntechOpen.

Perry, J. (2018). Gait analysis: Normal and pathological function (2nd ed.). Slack Incorporated.

Bamberg, S. J., Benbasat, A. Y., Scarborough, D. M., Krebs, D. E., & Paradiso, J. A. (2008). Gait analysis using a shoe-integrated wireless sensor system. IEEE transactions on information technology in biomedicine: A publication of the IEEE Engineering in Medicine and Biology Society, 12(4), 413–423.

Menz, H. B., Lord, S. R., & Fitzpatrick, R. C. (2003). Acceleration patterns of the head and pelvis when walking are associated with risk of falling in community-dwelling older people. Journal of Gerontology: Medical Sciences, 58(1): 37-42.

Published

2025-01-10

How to Cite

Tarmizi, M. I., Hamid, A., & Yusof, Y. (2025). SMART SHOE: PORTABLE GAIT MONITORING SYSTEM UTILIZING INERTIAL MEASUREMENT UNIT (IMU). Jurnal Mekanikal, 48(1). https://doi.org/10.11113/jm.v48.561

Issue

Section

Mechanical

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.