PROGRESSIVE DAMAGE MODEL FOR NON-CRIMP FABRIC COMPOSITE: MODELLING FRAMEWORK AND VERIFICATION
DOI:
https://doi.org/10.11113/jm.v48.637Keywords:
Damage Modelling, Non-Crimp Fabric, Finite Element AnalysisAbstract
Non-crimp fabric (NCF) composites have become increasingly used for primary aircraft structures due to its similar mechanical performance as the conventional Carbon Fiber Reinforced Plastic (CFRP) prepreg but comes with a greater manufacturing advantage. Inherent to its manufacturing method such as the Resin Transfer Molding (RTM), the NCF textile comes in dry state and requires stitching to hold the fiber tows in bundle shape for handling purposes. Because of this unique architecture, the damage mechanisms of NCF composites are different compared to unidirectional prepreg, which often comes in tape format. In this study, a progressive damage model operating at mesoscale level is proposed to predict the stiffness and strength of NCF composite laminate. The strength-based model was derived from LaRC05 model with an addition of damage evolution model to account for fracture energy dissipation after damage is initiated. Verification steps were performed using available data on the literature, and comparisons with other damage models such as Hashin model and Tsai-Hill model are conducted to ensure model’s conformity and accuracy. The result from the proposed model demonstrates good agreement with experimental data published by other authors with maximum error up to 16%.
References
G. A. Bibo, P. J. Hogg, R. Backhouse, and A. Mills, “Carbon-fibre non-crimp fabric laminates for cost-effective damage-tolerant structures,” Compos. Sci. Technol., vol. 58, no. 1, pp. 129–143, 1998
doi: 10.1016/S0266-3538(97)00106-1.
D. Hartung and M. Wiedemann, “Adaptive, tolerant and efficient composite structures,” pp. 167–177, 2013
doi: 10.1007/978-3-642-29190-6.
L. E. Asp, F. Edgren, and S. Anders, “Effects of stitch pattern on the mechanical properties of non-crimp fabric composites,” ECCM11 - 11TH European Conference On Composite Materials, Rhodes, Greece, 2004.
F. Edgren, D. Mattsson, L. E. Asp, and J. Varna, “Formation of damage and its effects on non-crimp fabric reinforced composites loaded in tension,” Compos. Sci. Technol., vol. 64, no. 5, pp. 675–692, 2004
doi: 10.1016/S0266-3538(03)00292-6.
H. Molker, D. Wilhelmsson, R. Gutkin, and L. E. Asp, “Orthotropic criteria for transverse failure of non-crimp fabric-reinforced composites,” J. Compos. Mater., vol. 50, no. 18, pp. 2445–2458, 2016
doi: 10.1177/0021998315605877.
F. Edgren, L. E. Asp, and R. Joffe, “Failure of NCF composites subjected to combined compression and shear loading,” Compos. Sci. Technol., vol. 66, no. 15, pp. 2865–2877, 2006
doi: 10.1016/j.compscitech.2006.02.021.
F. Edgren, C. Soutis, and L. E. Asp, “Damage tolerance analysis of NCF composite sandwich panels,” Compos. Sci. Technol., vol. 68, no. 13, pp. 2635–2645, 2008
doi: 10.1016/j.compscitech.2008.04.041.
E. Marklund, J. Varna, and L. E. Asp, “Stiffness and strength modelling of non-crimp fabric composites,” 52nd AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf. Denver, USA, no. April, pp. 1–17, 2011
doi: 10.2514/6.2011-1748.
T. Bru, P. Hellström, and R. Gutkin, “Characterisation of the mechanical and fracture properties of a uni-weave carbon fibre / epoxy non-crimp fabric composite,” vol. 6, pp. 680–695, 2016.
H. Molker, R. Gutkin, and L. E. Asp, “Implementation of failure criteria for transverse failure of orthotropic Non-Crimp Fabric composite materials,” Compos. Part A Appl. Sci. Manuf., vol. 92, pp. 158–166, 2017
doi: 10.1016/j.compositesa.2016.09.021.
S. T. Pinho, G. M. Vyas, and P. Robinson, “Material and structural response of polymer-matrix fibre-reinforced composites,” J. Compos. Mater., vol. 47, no. 6–7, pp. 679–696, 2013
doi: 10.1177/0021998313476523.
A. S. Kaddour, M. J. Hinton, S. Li, and P. A. Smith, “How Can Composites Design and Manufacture Communities Build Their Strength,” ECCM16 - 16TH European Conference On Composite Materials, Seville, Spain, 22-26 June 2014.
I. Lapczyk and J. A. Hurtado, “Progressive damage modeling in fiber-reinforced materials,” Compos. Part A Appl. Sci. Manuf., vol. 38, no. 11, pp. 2333–2341, 2007
doi: 10.1016/j.compositesa.2007.01.017.
L. M. Ferreira and E. Graciani, “Progressive Damage Study of Ncf Composites Under Compressive Loading,” ECCM16 - 16TH European Conference On Composite Materials, Seville, Spain, 22-26 June 2014.
S. T. Pinho, C. G. Dávila, P. P. Camanho, L. Iannucci, and P. Robinson, “Failure Models and Criteria for FRP Under In-Plane or Three-Dimensional Stress States Including Shear Non-linearity,” Tm-2005-213530, no. February, p. 68, 2005
doi: NASA/TM-2005-213530.
P. P. Camanho, C. G. Dávila, S. T. Pinho, L. Iannucci, and P. Robinson, “Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear,” Compos. Part A Appl. Sci. Manuf., vol. 37, no. 2, pp. 165–176, Feb. 2006
doi: 10.1016/j.compositesa.2005.04.023.
A. Puck and H. Schu, “Failure Analysis of FRP Lamninates by Means of Physically Based Phenomenological Models.pdf,” Compos. Sci. Technol., vol. 62, pp. 1633–1662, 2002
doi: 10.1016/S0266-3538(01)00208-1.
Z. Hashin, “Failure Criteria for Unidirectional Fiber Composites,” J. Appl. Mech., vol. 47, no. 2, p. 329, 1980
doi: 10.1115/1.3153664.
Z. P. Bažant and B. H. Oh, “Crack band theory for fracture of concrete,” Matériaux Constr., vol. 16, no. 3, pp. 155–177, 1983
doi: 10.1007/BF02486267.
C. Zhang, N. Li, W. Wang, W. K. Binienda, and H. Fang, “Progressive damage simulation of triaxially braided composite using a 3D meso-scale finite element model,” Compos. Struct., vol. 125, pp. 104–116, Jul. 2015
doi: 10.1016/j.compstruct.2015.01.034.
G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics, vol. 219. Berlin, Heidelberg: Springer Berlin Heidelberg, 1976.
P. Maimí, P. P. Camanho, J. A. Mayugo, and C. G. Dávila, “A continuum damage model for composite laminates: Part II - Computational implementation and validation,” Mech. Mater., vol. 39, no. 10, pp. 909–919, 2007
doi: 10.1016/j.mechmat.2007.03.006.
R. Vignjevic, N. Djordjevic, T. De Vuyst, and S. Gemkow, “Modelling of strain softening materials based on equivalent damage force,” Comput. Methods Appl. Mech. Eng., vol. 335, pp. 52–68, 2018
doi: 10.1016/j.cma.2018.01.049.
K. Vallons, I. Duque, S. V. Lomov, and I. Verpoest, “Loading direction dependence of the tensile stiffness, strength and fatigue life of biaxial carbon/epoxy NCF composites,” Compos. Part A Appl. Sci. Manuf., vol. 42, no. 1, pp. 16–21, 2011
doi: 10.1016/j.compositesa.2010.09.009.
S. S. R. Koloor, M. R. Ayatollahi, and M. N. Tamin, “Elastic-damage deformation response of fiber-reinforced polymer composite laminates with lamina interfaces,” J. Reinf. Plast. Compos., vol. 36, no. 11, pp. 832–849, 2017
doi: 10.1177/0731684417693427.
S. S. R. Koloor, M. R. Khosravani, R. I. R. Hamzah, and M. N. Tamin, “FE model-based construction and progressive damage processes of FRP composite laminates with different manufacturing processes,” Int. J. Mech. Sci., vol. 141, no. February, pp. 223–235, 2018
doi: 10.1016/j.ijmecsci.2018.03.028.
Downloads
Published
How to Cite
Issue
Section
License
Copyright of articles that appear in Jurnal Mekanikal belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions or any other reproductions of similar nature.















