PROGRESSIVE DAMAGE MODEL FOR NON-CRIMP FABRIC COMPOSITE: MODELLING FRAMEWORK AND VERIFICATION

Authors

  • SYAZWAN AHMAD RASHIDI Faculty of Mechanical Engineering, Universiti Teknologi Malaysia
  • DR. HARIS AHMAD ISRAR AHMAD Faculty of Mechanical Engineering, Universiti Teknologi Malaysia
  • SARAH OTHMAN Aerospace Malaysia Innovation Centre (AMIC)
  • PROF. DR. MOHD NASIR TAMIN Faculty of Mechanical Engineering, Universiti Teknologi Malaysia

DOI:

https://doi.org/10.11113/jm.v48.637

Keywords:

Damage Modelling, Non-Crimp Fabric, Finite Element Analysis

Abstract

Non-crimp fabric (NCF) composites have become increasingly used for primary aircraft structures due to its similar mechanical performance as the conventional Carbon Fiber Reinforced Plastic (CFRP) prepreg but comes with a greater manufacturing advantage. Inherent to its manufacturing method such as the Resin Transfer Molding (RTM), the NCF textile comes in dry state and requires stitching to hold the fiber tows in bundle shape for handling purposes. Because of this unique architecture, the damage mechanisms of NCF composites are different compared to unidirectional prepreg, which often comes in tape format. In this study, a progressive damage model operating at mesoscale level is proposed to predict the stiffness and strength of NCF composite laminate. The strength-based model was derived from LaRC05 model with an addition of damage evolution model to account for fracture energy dissipation after damage is initiated. Verification steps were performed using available data on the literature, and comparisons with other damage models such as Hashin model and Tsai-Hill model are conducted to ensure model’s conformity and accuracy. The result from the proposed model demonstrates good agreement with experimental data published by other authors with maximum error up to 16%.

References

G. A. Bibo, P. J. Hogg, R. Backhouse, and A. Mills, “Carbon-fibre non-crimp fabric laminates for cost-effective damage-tolerant structures,” Compos. Sci. Technol., vol. 58, no. 1, pp. 129–143, 1998

doi: 10.1016/S0266-3538(97)00106-1.

D. Hartung and M. Wiedemann, “Adaptive, tolerant and efficient composite structures,” pp. 167–177, 2013

doi: 10.1007/978-3-642-29190-6.

L. E. Asp, F. Edgren, and S. Anders, “Effects of stitch pattern on the mechanical properties of non-crimp fabric composites,” ECCM11 - 11TH European Conference On Composite Materials, Rhodes, Greece, 2004.

F. Edgren, D. Mattsson, L. E. Asp, and J. Varna, “Formation of damage and its effects on non-crimp fabric reinforced composites loaded in tension,” Compos. Sci. Technol., vol. 64, no. 5, pp. 675–692, 2004

doi: 10.1016/S0266-3538(03)00292-6.

H. Molker, D. Wilhelmsson, R. Gutkin, and L. E. Asp, “Orthotropic criteria for transverse failure of non-crimp fabric-reinforced composites,” J. Compos. Mater., vol. 50, no. 18, pp. 2445–2458, 2016

doi: 10.1177/0021998315605877.

F. Edgren, L. E. Asp, and R. Joffe, “Failure of NCF composites subjected to combined compression and shear loading,” Compos. Sci. Technol., vol. 66, no. 15, pp. 2865–2877, 2006

doi: 10.1016/j.compscitech.2006.02.021.

F. Edgren, C. Soutis, and L. E. Asp, “Damage tolerance analysis of NCF composite sandwich panels,” Compos. Sci. Technol., vol. 68, no. 13, pp. 2635–2645, 2008

doi: 10.1016/j.compscitech.2008.04.041.

E. Marklund, J. Varna, and L. E. Asp, “Stiffness and strength modelling of non-crimp fabric composites,” 52nd AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf. Denver, USA, no. April, pp. 1–17, 2011

doi: 10.2514/6.2011-1748.

T. Bru, P. Hellström, and R. Gutkin, “Characterisation of the mechanical and fracture properties of a uni-weave carbon fibre / epoxy non-crimp fabric composite,” vol. 6, pp. 680–695, 2016.

H. Molker, R. Gutkin, and L. E. Asp, “Implementation of failure criteria for transverse failure of orthotropic Non-Crimp Fabric composite materials,” Compos. Part A Appl. Sci. Manuf., vol. 92, pp. 158–166, 2017

doi: 10.1016/j.compositesa.2016.09.021.

S. T. Pinho, G. M. Vyas, and P. Robinson, “Material and structural response of polymer-matrix fibre-reinforced composites,” J. Compos. Mater., vol. 47, no. 6–7, pp. 679–696, 2013

doi: 10.1177/0021998313476523.

A. S. Kaddour, M. J. Hinton, S. Li, and P. A. Smith, “How Can Composites Design and Manufacture Communities Build Their Strength,” ECCM16 - 16TH European Conference On Composite Materials, Seville, Spain, 22-26 June 2014.

I. Lapczyk and J. A. Hurtado, “Progressive damage modeling in fiber-reinforced materials,” Compos. Part A Appl. Sci. Manuf., vol. 38, no. 11, pp. 2333–2341, 2007

doi: 10.1016/j.compositesa.2007.01.017.

L. M. Ferreira and E. Graciani, “Progressive Damage Study of Ncf Composites Under Compressive Loading,” ECCM16 - 16TH European Conference On Composite Materials, Seville, Spain, 22-26 June 2014.

S. T. Pinho, C. G. Dávila, P. P. Camanho, L. Iannucci, and P. Robinson, “Failure Models and Criteria for FRP Under In-Plane or Three-Dimensional Stress States Including Shear Non-linearity,” Tm-2005-213530, no. February, p. 68, 2005

doi: NASA/TM-2005-213530.

P. P. Camanho, C. G. Dávila, S. T. Pinho, L. Iannucci, and P. Robinson, “Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear,” Compos. Part A Appl. Sci. Manuf., vol. 37, no. 2, pp. 165–176, Feb. 2006

doi: 10.1016/j.compositesa.2005.04.023.

A. Puck and H. Schu, “Failure Analysis of FRP Lamninates by Means of Physically Based Phenomenological Models.pdf,” Compos. Sci. Technol., vol. 62, pp. 1633–1662, 2002

doi: 10.1016/S0266-3538(01)00208-1.

Z. Hashin, “Failure Criteria for Unidirectional Fiber Composites,” J. Appl. Mech., vol. 47, no. 2, p. 329, 1980

doi: 10.1115/1.3153664.

Z. P. Bažant and B. H. Oh, “Crack band theory for fracture of concrete,” Matériaux Constr., vol. 16, no. 3, pp. 155–177, 1983

doi: 10.1007/BF02486267.

C. Zhang, N. Li, W. Wang, W. K. Binienda, and H. Fang, “Progressive damage simulation of triaxially braided composite using a 3D meso-scale finite element model,” Compos. Struct., vol. 125, pp. 104–116, Jul. 2015

doi: 10.1016/j.compstruct.2015.01.034.

G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics, vol. 219. Berlin, Heidelberg: Springer Berlin Heidelberg, 1976.

P. Maimí, P. P. Camanho, J. A. Mayugo, and C. G. Dávila, “A continuum damage model for composite laminates: Part II - Computational implementation and validation,” Mech. Mater., vol. 39, no. 10, pp. 909–919, 2007

doi: 10.1016/j.mechmat.2007.03.006.

R. Vignjevic, N. Djordjevic, T. De Vuyst, and S. Gemkow, “Modelling of strain softening materials based on equivalent damage force,” Comput. Methods Appl. Mech. Eng., vol. 335, pp. 52–68, 2018

doi: 10.1016/j.cma.2018.01.049.

K. Vallons, I. Duque, S. V. Lomov, and I. Verpoest, “Loading direction dependence of the tensile stiffness, strength and fatigue life of biaxial carbon/epoxy NCF composites,” Compos. Part A Appl. Sci. Manuf., vol. 42, no. 1, pp. 16–21, 2011

doi: 10.1016/j.compositesa.2010.09.009.

S. S. R. Koloor, M. R. Ayatollahi, and M. N. Tamin, “Elastic-damage deformation response of fiber-reinforced polymer composite laminates with lamina interfaces,” J. Reinf. Plast. Compos., vol. 36, no. 11, pp. 832–849, 2017

doi: 10.1177/0731684417693427.

S. S. R. Koloor, M. R. Khosravani, R. I. R. Hamzah, and M. N. Tamin, “FE model-based construction and progressive damage processes of FRP composite laminates with different manufacturing processes,” Int. J. Mech. Sci., vol. 141, no. February, pp. 223–235, 2018

doi: 10.1016/j.ijmecsci.2018.03.028.

Downloads

Published

2025-11-17

How to Cite

AHMAD RASHIDI , S., ISRAR AHMAD , D. H. A., OTHMAN , S., & TAMIN , P. D. M. N. (2025). PROGRESSIVE DAMAGE MODEL FOR NON-CRIMP FABRIC COMPOSITE: MODELLING FRAMEWORK AND VERIFICATION. Jurnal Mekanikal, 48(2), 155–174. https://doi.org/10.11113/jm.v48.637

Issue

Section

Mechanical

Similar Articles

<< < 16 17 18 19 20 21 

You may also start an advanced similarity search for this article.