COMPREHENSIVE REVIEW OF NANOPOROUS ANODIC ALUMINA: SYNTHESIS STRATEGIES AND FUTURE PERSPECTIVES

Authors

  • AO WANG College of Physics and Electronic Engineering, Hebei Minzu Normal University, Chengde, Hebei Province, 067000, China.
  • NUR DALILAH JOHARI Materials Research Consultancy Group, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru Malaysia.
  • ABDUL HAKIM MD YUSOP Materials Research Consultancy Group, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru Malaysia.
  • MUHAMAD AZIZI BIN MAT YAJID Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru Malaysia.
  • WAN FAHMIN FAIZ WAN ALI Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru Malaysia.

DOI:

https://doi.org/10.11113/jm.v48.554

Keywords:

nanoporous anodic aluminium, electrochemistry, nanotechnology.

Abstract

Nanoporous anodised aluminium (NAA) is a valuable substance characterised by a uniform pore structure, exceptional chemical stability, and robust mechanical qualities. It possesses extensive applicability in biology, energy, sensing, and optics. This research initially examines the historical development of NAA, elucidates the fundamental principles of its formation process, and elucidates the mechanism underlying its distinctive structure. This study systematically analyses the impact of key parameters—oxidation voltage, oxidation temperature, electrolyte type, and concentration—on the anodization process and their effects on the structural characteristics of NAA, including pore size, pore spacing, and oxide film thickness. The comparison of outcomes from various preparation circumstances elucidates the approach for optimising the procedure to get the desired structure. This research delineates the unique applications of NAA in the biomedical domain, encompassing drug carriers, tissue engineering, and antibacterial coatings, while also categorising its use in energy conversion and storage, including osmotic energy conversion and battery augmentation. The advanced developments of NAA in humidity, gas, and optical sensors are thoroughly examined, particularly their potential applications in the creation of photonic crystals, photocatalysis, and random laser platforms. This article anticipates the future trajectory of NAA, identifies its technical challenges and research priorities concerning large-scale preparation, precise structural control, and multifunctional applications, and offers a theoretical foundation and practical guidance for further investigation in this domain.

References

H. Masuda, Highly Ordered Nanohole Arrays in Anodic Porous Alumina, in: Ordered Porous Nanostructures Appl., Springer-Verlag, New York, 2005: pp. 37–55. https://doi.org/10.1007/0-387-25193-6-3.

J. Wook Yang, H. Ryeong Kwon, J. Ho Seo, S. Ryu, H. Won Jang, Nanoporous oxide electrodes for energy conversion and storage devices, RSC Appl. Interfaces 1 (2024) 11–42. https://doi.org/10.1039/D3LF00094J.

D. Valero-Calvo, A. de la Escosura-Muñiz, Electroanalytical systems based on solid-state nanochannel arrays for the detection of biomarkers of interest in clinical diagnostics, TrAC Trends Anal. Chem. 172 (2024) 117568. https://doi.org/10.1016/j.trac.2024.117568.

M. Wang, K. Chen, L. Xie, Y. Wu, X. Chen, N. Lv, F. Zhang, Y. Wang, B. Chen, Polarized emission of Cs3Cu2I5 nanowires embedded in nanopores of an anodic aluminum oxide template, Opt. Lett. 49 (2024) 1349–1352. https://doi.org/10.1364/OL.515767.

J. Lee, S. Shin, Y. Jiang, C. Jeong, H.A. Stone, C.-H. Choi, Oil-Impregnated Nanoporous Oxide Layer for Corrosion Protection with Self-Healing, Adv. Funct. Mater. 27 (2017) 1606040. https://doi.org/10.1002/adfm.201606040.

C. Zhang, Z. Liu, C. Li, J. Cao, J.G. Buijnsters, Templated Synthesis of Diamond Nanopillar Arrays Using Porous Anodic Aluminium Oxide (AAO) Membranes, Nanomaterials 13 (2023) 888. https://doi.org/10.3390/nano13050888.

H. Zhang, M. Zhou, H. Zhao, Y. Lei, Ordered nanostructures arrays fabricated by anodic aluminum oxide (AAO) template-directed methods for energy conversion, Nanotechnology 32 (2021) 502006. https://doi.org/10.1088/1361-6528/ac268b.

M. Sener, O. Sisman, N. Kilinc, AAO-assisted nanoporous platinum films for hydrogen sensor application, Catalysts 13 (2023) 459. https://doi.org/10.3390/catal13030459.

C.-A. Ku, C.-K. Chung, Advances in humidity nanosensors and their application: Review, Sensors 23 (2023) 2328. https://doi.org/10.3390/s23042328.

J.V.D.S. Araujo, M. Milagre, I. Costa, A historical, statistical and electrochemical approach on the effect of microstructure in the anodizing of Al alloys: a review, Crit. Rev. Solid State Mater. Sci. (2023) 1–61. https://doi.org/10.1080/10408436.2023.2230250.

P. Kapruwan, L.K. Acosta, J. Ferré-Borrull, L.F. Marsal, Optical platform to analyze a model drug-loading and releasing profile based on nanoporous anodic alumina gradient index filters, Nanomaterials 11 (2021) 730. https://doi.org/10.3390/nano11030730.

E. Ducretet, Note sur un rhéotome liquide à direction constante, fondé sur une propriété nouvelle de l’aluminium, J. Phys. Théorique Appliquée 4 (1875) 84–85. https://doi.org/10.1051/jphystap:01875004008401.

C. Pollak, German Patent: Elektrischer Flüssigkeitskondensator, 92564, 1897.

S. Wernick, Electrolytic polishing and bright plating of metals, Redman, London, 1948.

F. Keller, M.S. Hunter, D.L. Robinson, Structural Features of Oxide Coatings on Aluminum, J. Electrochem. Soc. 100 (1953) 411. https://doi.org/10.1149/1.2781142.

The morphology and mechanism of formation of porous anodic films on aluminium, Proc. R. Soc. Lond. Math. Phys. Sci. (1970). https://doi.org/10.1098/rspa.1970.0129.

J.P. O’Sullivan, J.A. Hockey, G.C. Wood, Infra-red spectroscopic study of anodic alumina films, Trans. Faraday Soc. 65 (1969) 535–541. https://doi.org/10.1039/TF9696500535.

A. Baron-Wiechec, M. Burke, T. Hashimoto, H. Liu, P. Skeldon, G.E. Thompson, New Insights into Pore Initiation in Anodic Alumina, LATEST2, School of Materials, The University of Manchester, 2013.

S. Toshihiko, K. Kyoko, Theories of anodized aluminum 100 Q&A., アルトピア 27 (1997) 39–48.

A.O. Araoyinbo, A.I. Azmi, C.M.R. Ghazali, A. Rahmat, K. Hussin, M.M.A. Abdullah, Nanoporous alumina fabrication: A short review, Nanosci. Nanotechnol.-Asia 7 (n.d.) 183–199. https://doi.org/10.2174/2210681206666161017120751.

H. Masuda, K. Fukuda, Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina, Science 268 (1995) 1466–1468. https://doi.org/10.1126/science.268.5216.1466.

G.D. Sulka, S. Stroobants, V. Moshchalkov, G. Borghs, J.-P. Celis, Synthesis of Well-Ordered Nanopores by Anodizing Aluminum Foils in Sulfuric Acid, J. Electrochem. Soc. 149 (2002) D97. https://doi.org/10.1149/1.1481527.

W. Lee, R. Ji, C.A. Ross, U. Gösele, K. Nielsch, Wafer-Scale Ni Imprint Stamps for Porous Alumina Membranes Based on Interference Lithography, Small 2 (2006) 978–982. https://doi.org/10.1002/smll.200600100.

A. Santos, C.S. Law, D.W.C. Lei, T. Pereira, D. Losic, Fine tuning of optical signals in nanoporous anodic alumina photonic crystals by apodized sinusoidal pulse anodisation, Nanoscale 8 (2016) 18360–18375. https://doi.org/10.1039/C6NR06796D.

P. Csokan, Nucleation Mechanism in Oxide Formation During Anodic Oxidation of Aluminum, in: M.G. Fontana, R.W. Staehle (Eds.), Adv. Corros. Sci. Technol., Springer US, Boston, MA, 1980: pp. 239–356. https://doi.org/10.1007/978-1-4615-9065-1_4.

J.M. Runge, The Metallurgy of Anodizing Aluminum: Connecting Science to Practice, 1st ed. 2018 edition, Springer, 2018.

M.A. van Put, S.T. Abrahami, O. Elisseeva, J.M.M. de Kok, J.M.C. Mol, H. Terryn, Potentiodynamic anodizing of aluminum alloys in Cr(VI)-free electrolytes, Surf. Interface Anal. 48 (2016) 946–952. https://doi.org/10.1002/sia.5919.

A.M. Abd-Elnaiem, A.M. Mebed, W.A. El-Said, M.A. Abdel-Rahim, Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage, Thin Solid Films 570 (2014) 49–56. https://doi.org/10.1016/j.tsf.2014.08.046.

M. Curioni, P. Skeldon, G.E. Thompson, J. Ferguson, Graded Anodic Film Morphologies for Sustainable Exploitation of Aluminium Alloys in Aerospace, Adv. Mater. Res. 38 (2008) 48–55. https://doi.org/10.4028/www.scientific.net/AMR.38.48.

L. Zaraska, G. Sulka, J. Szeremeta, M. Jaskula, Porous anodic alumina formed by anodization of aluminum alloy (AA1050) and high purity aluminum, Electrochimica Acta 55 (2010) 4377–4386. https://doi.org/10.1016/j.electacta.2009.12.054.

Z. Li, Y. Li, S. Li, J. Wu, X. Hu, Z. Ling, L. Jin, A Modified Quantitative Method for Regularity Evaluation of Porous AAO and Related Intrinsic Mechanisms, J. Electrochem. Soc. 165 (2018) E214. https://doi.org/10.1149/2.0841805jes.

A.P. Leontiev, I.V. Roslyakov, K.S. Napolskii, Complex influence of temperature on oxalic acid anodizing of aluminium, Electrochimica Acta 319 (2019) 88–94. https://doi.org/10.1016/j.electacta.2019.06.111.

P. Ramana Reddy, K.M. Ajith, N.K. Udayashankar, Effect of electrolyte concentration on morphological and photoluminescence properties of free standing porous anodic alumina membranes formed in oxalic acid, Mater. Sci. Semicond. Process. 106 (2020) 104755. https://doi.org/10.1016/j.mssp.2019.104755.

F. Li, L. Zhang, R.M. Metzger, On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide, Chem. Mater. 10 (1998) 2470–2480. https://doi.org/10.1021/cm980163a.

W. Huang, M. Yu, S. Cao, L. Wu, X. Shen, Y. Song, Fabrication of highly ordered porous anodic alumina films in 0.75 M oxalic acid solution without using nanoimprinting, Mater. Res. Bull. 111 (2019) 24–33. https://doi.org/10.1016/j.materresbull.2018.11.002.

A.P. Li, F. Müller, A. Birner, K. Nielsch, U. Gösele, Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina, J. Appl. Phys. 84 (1998) 6023–6026. https://doi.org/10.1063/1.368911.

F.A. Bruera, G.R. Kramer, M.L. Vera, A.E. Ares, Low-Cost Nanostructured Coating of Anodic Aluminium Oxide Synthesized in Sulphuric Acid as Electrolyte, Coatings 11 (2021) 309. https://doi.org/10.3390/coatings11030309.

H. Masuda, K. Yada, A. Osaka, Self-Ordering of Cell Configuration of Anodic Porous Alumina with Large-Size Pores in Phosphoric Acid Solution, Jpn. J. Appl. Phys. 37 (1998) L1340. https://doi.org/10.1143/JJAP.37.L1340.

V. Sadasivan, C.P. Richter, L. Menon, P.F. Williams, Electrochemical self-assembly of porous alumina templates, AIChE J. 51 (2005) 649–655. https://doi.org/10.1002/aic.10332.

A. Jagminienė, G. Valinčius, A. Riaukaitė, A. Jagminas, The influence of the alumina barrier-layer thickness on the subsequent AC growth of copper nanowires, J. Cryst. Growth 274 (2005) 622–631. https://doi.org/10.1016/j.jcrysgro.2004.10.021.

P. Kapruwan, J. Ferré-Borrull, L.F. Marsal, Real-Time Monitoring of Doxorubicin Release from Hybrid Nanoporous Anodic Alumina Structures, Sensors 21 (2021) 7819. https://doi.org/10.3390/s21237819.

T. Lednický, A. Bonyár, Large scale fabrication of ordered gold nanoparticle–epoxy surface nanocomposites and their application as label-free plasmonic DNA biosensors, ACS Appl. Mater. Interfaces 12 (2020) 4804–4814. https://doi.org/10.1021/acsami.9b20907.

L. Pla, S. Santiago-Felipe, M.Á. Tormo-Mas, J. Pemán, F. Sancenón, E. Aznar, R. Martínez-Máñez, Aptamer-Capped nanoporous anodic alumina for Staphylococcus aureus detection, Sens. Actuators B Chem. 320 (2020) 128281. https://doi.org/10.1016/j.snb.2020.128281.

H. Agbe, D.K. Sarkar, X.-G. Chen, N. Faucheux, G. Soucy, J.-L. Bernier, Silver–polymethylhydrosiloxane nanocomposite coating on anodized aluminum with superhydrophobic and antibacterial properties, ACS Appl. Bio Mater. 3 (2020) 4062–4073. https://doi.org/10.1021/acsabm.0c00159.

Y. Liu, Y. Chen, Y. Guo, X. Wang, S. Ding, X. Sun, H. Wang, Y. Zhu, L. Jiang, Photo-controllable ion-gated metal–organic framework MIL-53 sub-nanochannels for efficient osmotic energy generation, ACS Nano 16 (2022) 16343–16352. https://doi.org/10.1021/acsnano.2c05498.

W. Chen, Q. Zhang, Y. Qian, W. Xin, D. Hao, X. Zhao, C. Zhu, X.-Y. Kong, B. Lu, L. Jiang, L. Wen, Improved ion transport in hydrogel-based nanofluidics for osmotic energy conversion, ACS Cent. Sci. 6 (2020) 2097–2104. https://doi.org/10.1021/acscentsci.0c01054.

Y. Fu, J. Yang, Y.S. Su, W. Du, Y.G. Ma, Daytime passive radiative cooler using porous alumina, Sol. Energy Mater. Sol. Cells 191 (2019) 50–54. https://doi.org/10.1016/j.solmat.2018.10.027.

A. Díaz-Lobo, M. Martin-Gonzalez, Á. Morales-Sabio, C.V. Manzano, Suitability of anodic porous alumina as a passive radiative cooler: An in-depth study, ACS Appl. Opt. Mater. 2 (2024) 980–990. https://doi.org/10.1021/acsaom.3c00216.

C.-A. Ku, C.-Y. Yu, C.-W. Hung, C.-K. Chung, Advances in the fabrication of nanoporous anodic aluminum oxide and its applications to sensors: A review, Nanomaterials 13 (2023) 2853. https://doi.org/10.3390/nano13212853.

C.C. Yang, T.H. Liu, S.H. Chang, Relative humidity sensing properties of indium nitride compound with oxygen doping on silicon and AAO substrates, Mod. Phys. Lett. B 33 (2019) 1940044. https://doi.org/10.1142/S021798491940044X.

C.K. Chung, O.K. Khor, C.J. Syu, S.W. Chen, Effect of oxalic acid concentration on the magnetically enhanced capacitance and resistance of AAO humidity sensor, Sens. Actuators B Chem. 210 (2015) 69–74. https://doi.org/10.1016/j.snb.2014.12.096.

U. Malinovskis, A. Dutovs, R. Poplausks, D. Jevdokimovs, O. Graniel, M. Bechelany, I. Muiznieks, D. Erts, J. Prikulis, Visible photoluminescence of variable-length zinc oxide nanorods embedded in porous anodic alumina template for biosensor applications, Coatings 11 (2021) 756. https://doi.org/10.3390/coatings11070756.

S. Gunenthiran, J. Wang, C.S. Law, A.D. Abell, Z.T. Alwahabi, A. Santos, Nanoporous anodic alumina photonic crystals for solid-state lasing systems: State-of-the-art and perspectives, J. Mater. Chem. C (2024). https://doi.org/10.1039/D4TC04166F.

L. Liu, S.Y. Lim, C.S. Law, B. Jin, A.D. Abell, G. Ni, A. Santos, Engineering of broadband nanoporous semiconductor photonic crystals for visible-light-driven photocatalysis, ACS Appl. Mater. Interfaces 12 (2020) 57079–57092. https://doi.org/10.1021/acsami.0c16914.

M. Li, C. Feng, L. Zhu, Y. Zhao, Fabrication of nanoporous anodized aluminum oxide based photonic crystals with multi-band responses in the vis-NIR region, Nanoscale (2024). https://doi.org/10.1039/D4NR04744C.

S. Gunenthiran, C.S. Law, J. Wang, S.Y. Lim, A.D. Abell, Z.T. Alwahabi, A. Santos, Engineering of solid-state nanoporous laser through dendrimer-encapsulated fluorophores, ACS Appl. Mater. Interfaces 16 (2024) 15059–15072. https://doi.org/10.1021/acsami.4c00791.

Downloads

Published

2025-11-17

How to Cite

WANG, A., NUR DALILAH JOHARI, ABDUL HAKIM MD YUSOP, MUHAMAD AZIZI BIN MAT YAJID, & WAN FAHMIN FAIZ WAN ALI. (2025). COMPREHENSIVE REVIEW OF NANOPOROUS ANODIC ALUMINA: SYNTHESIS STRATEGIES AND FUTURE PERSPECTIVES. Jurnal Mekanikal, 48(2), 36–49. https://doi.org/10.11113/jm.v48.554

Issue

Section

Mechanical

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.