Aerodynamic Performance Enhancement of Multi-Rotor UAVs: A Review on Minimizing Drag from Wake Interactions

Authors

  • Muhammad Hafizuddin Zaidon UTM Aerolab, Institute for Sustainable Transport, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Iskandar Shah Ishak UTM Aerolab, Institute for Sustainable Transport, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Faruq Muhammad Foong UTM Aerolab, Institute for Sustainable Transport, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • ZM Ali Fakulti Kejuruteraan Mekanikal, Universiti Teknologi MARA, 40450, Shah Alam, Malaysia

DOI:

https://doi.org/10.11113/jm.v48.557

Keywords:

Drag, Rotor Wake, UAV, Multirotor, Shark Skin, Dimple, Vortex Generator, Endurance.

Abstract

Unmanned Aerial Vehicles (UAVs) play a critical role in a wide range of applications, from surveillance to air mobility. However, aerodynamic challenges often compromise their performance, particularly wake-induced drag, which limits their efficiency and endurance. This paper reviews some significant research efforts dedicated to understanding wake behaviour in UAVs and the various strategies developed to mitigate its effects. The review focuses on advanced aerodynamic enhancements, including vortex generators, dimples, shark skin-inspired structures, and ducted-rotor configuration, offering unique mechanisms for reducing wake formation and associated drag. Vortex generators are discussed for their ability to energize the boundary layer, effectively delaying flow separation and reducing turbulence behind the UAV, which minimizes drag. Dimples, modelled after the surface of golf balls, are shown to alter flow patterns around the UAV, leading to a smoother airflow and substantial drag reduction. Furthermore, shark skin structures, inspired by the micro-patterned denticles on shark skin, have been demonstrated to improve both drag and lift enhancement by manipulating boundary layers and generating beneficial vortices. Integrating these bio-inspired and engineered solutions into the design offers a promising pathway to significantly enhance aerodynamic performance. By reducing wake-induced drag, these technologies can improve endurance, higher efficiency, and greater operational capabilities of UAVs. This paper provides a comprehensive foundation for future research and innovation in UAV aerodynamics, encouraging the adoption of these advanced design strategies to overcome the challenges of wake behaviour and maximize UAV performance.

References

Liu, C., Li, B., Wei, Z., Zhang, Z., Shan, Z., & Wang, Y. (2024). Effects of wake separation on aerodynamic interference between rotors in urban low-altitude UAV formation flight. Aerospace, 11(11), 865. https://doi.org/10.3390/aerospace11110865

Deng, C., Wang, S., Huang, Z., Tan, Z., & Liu, J. (2014). Unmanned aerial vehicles for power line inspection: A cooperative way in platforms and communications. Journal of Communications, 9(9), 687–692. https://doi.org/10.12720/jcm.9.9.687-692

Kanellakis, C., & Nikolakopoulos, G. (2017). Survey on computer vision for UAVs: Current developments and trends. Journal of Intelligent and Robotic Systems, 87(1), 141–168. https://doi.org/10.1007/s10846-017-0483-z

Schweiger, K., & Lukas, P. (2022). Urban air mobility: Systematic review of scientific publications and regulations for vertiport design and operations. Drones, 6(7), 179. https://doi.org/10.3390/drones6070179

Dronova, I., Kislik, C., Dinh, Z., & Kelly, M. (2021). A review of unoccupied aerial vehicle use in wetland applications: Emerging opportunities in approach, technology, and data. Drones, 5(2), 45. https://doi.org/10.3390/drones5020045

Throneberry, G., Adam, T., Christopher, M., H., Shu, F., & Abdelkefi, A. (2022). Wake propagation and characteristics of a multi-rotor unmanned vehicle in forward flight. Drones, 6(5), 130. https://doi.org/10.3390/drones6050130

Stepanov, R., Zherekhov, V., Pakhov, V., Mikhailov, S., Garipov, A., Yakubov, W., & Barakos, G. N. (2016). Experimental study of helicopter fuselage drag. Journal of Aircraft, 53(5), 1343–1360. https://doi.org/10.2514/1.c033819

Leishman, J. G. (2017). Principles of helicopter aerodynamics. Cambridge University Press.

Konstantinidis, E., & Bouris, D. (2012). Bluff body aerodynamics and wake control. InTech EBooks. https://doi.org/10.5772/38684

Ramesh, J. P., Sivakumar, K., & Mugendiran, V. (2020). Investigation of wake aerodynamics in bluff body for UAV application. I-Manager's Journal on Mechanical Engineering, 10(2), 27–27. https://doi.org/10.26634/jme.10.2.16769

Caprace, D.-G., Ning, A., Chatelain, P., & Winckelmans, G. (2022). Effects of rotor-airframe interaction on the aeromechanics and wake of a quadcopter in forward flight. Aerospace Science and Technology, 130, 107899. https://doi.org/10.1016/j.ast.2022.107899

Tarakka, R., Salam, N., Jalaluddin, Rauf, W., & Ihsan, M. (2021). Aerodynamic drag reduction on the application of suction flow control on vehicle model with varied upstream velocity. IOP Conference Series: Materials Science and Engineering, 1173(1), 012045. https://doi.org/10.1088/1757-899x/1173/1/012045

Sengupta, B., Lee, Y., Araghizadeh, M. S., Myong, R. S., & Lee, H. (2024). Comparative analysis of direct method and fast multipole method for multirotor wake dynamics. International Journal of Aeronautical and Space Sciences. https://doi.org/10.1007/s42405-023-00699-w

Carreño R., M., Scanavino, M., D'Ambrosio, D., Guglieri, G., & Vilardi, A. (2022). Experimental and numerical analysis of hovering multicopter performance in low-Reynolds number conditions. Aerospace Science and Technology, 128, 107777. https://doi.org/10.1016/j.ast.2022.107777

Hwang, M.-h., Cha, H.-R., & Jung, S. Y. (2018). Practical endurance estimation for minimizing energy consumption of multirotor unmanned aerial vehicles. Energies, 11(9), 2221. https://doi.org/10.3390/en11092221

Lee, S., Seokbong Chae, S., Woo, S. Y., Jang, J., & Kim, J. (2021). Effects of rotor-rotor interaction on the wake structure and thrust generation of a quadrotor unmanned aerial vehicle. IEEE Access, 9, 85995–86016. https://doi.org/10.1109/access.2021.3088150

Lei, Y., & Lin, R. (2019). Effect of wind disturbance on the aerodynamic performance of coaxial rotors during hovering. Measurement and Control, 52(5-6), 665–674. https://doi.org/10.1177/0020294019834961

Lei, Y., & Wang, H. (2020). Aerodynamic optimization of a micro quadrotor aircraft with different rotor spacings in hover. Applied Sciences, 10(4), 1272. https://doi.org/10.3390/app10041272

Oo, N., Dan, Z., Mathieu, S., & Liu, X. (2023). Experimental investigation on turbulence effects on unsteady aerodynamics performances of two horizontally placed small-size UAV rotors. Aerospace Science and Technology, 141, 108535. https://doi.org/10.1016/j.ast.2023.108535

Schiano, F., Javier, A.-M., Konrad, R., Paul, B., Roland, Y. S., & Bruno, S. (2014). Towards estimation and correction of wind effects on a quadrotor UAV (pp. 134–141). https://doi.org/10.3929/ethz-a-010286793

Shukla, D., & Komerath, N. (2018). Multirotor drone aerodynamic interaction investigation. Drones, 2(4), 43. https://doi.org/10.3390/drones2040043

Zhou, W., Zhe, N., Li, H., & Hu, H. (2017). An experimental investigation on rotor-to-rotor interactions of small UAV propellers. 35th AIAA Applied Aerodynamics Conference. https://doi.org/10.2514/6.2017-3744

Zhu, H., Jiang, Z., Zhao, H., Pei, S., Li, H., & Lan, Y. (2021). Aerodynamic performance of propellers for multirotor unmanned aerial vehicles: Measurement, analysis, and experiment. Shock and Vibration, 2021, Article ID 9538647. https://doi.org/10.1155/2021/9538647

Lei, Y., & Wang, H. (2020). Aerodynamic performance of a quadrotor MAV considering the horizontal wind. IEEE Access, 8, 109421–109428. https://doi.org/10.1109/access.2020.3002706

Lei, Y., & Wang, J. (2019). Aerodynamic performance of quadrotor UAV with non-planar rotors. Applied Sciences, 9(14), 2779. https://doi.org/10.3390/app9142779

Alvarez, E. J., & Ning, A. (2020). High-fidelity modeling of multirotor aerodynamic interactions for aircraft design. AIAA Journal, 58(10), 4385–4400. https://doi.org/10.2514/1.J059178

Yeong, S. P., & Dol, S. S. (2016). Aerodynamic optimization of micro aerial vehicle. Journal of Applied Fluid Mechanics, 9(7), 2111–2121. https://doi.org/10.18869/acadpub.jafm.68.236.25522

Jeon, H., Jeyoung, S., Lee, H., & Eun, Y. (2021). Modeling quadrotor dynamics in a wind field. IEEE/ASME Transactions on Mechatronics, 26 (3), 1401–1411. https://doi.org/10.1109/tmech.2020.3019831

Ko, J., & Lee, S. (2023). Quantification of wake interaction effects on multi-rotor configurations in forward flight. Aerospace Science and Technology, 135, 108188. https://doi.org/10.1016/j.ast.2023.108188

Lee, H., & Lee, D. (2020). Rotor interactional effects on aerodynamic and noise characteristics of a small multirotor unmanned aerial vehicle. Physics of Fluids, 32(4), 047107. https://doi.org/10.1063/5.0003992

Lopez, O. R., Escobar, J., & Pociña Pérez, A. (2017). Computational study of the wake of a quadcopter propeller in hover. https://doi.org/10.2514/6.2017-3961

Luo, J., Zhu, L., & Yan, G. (2015). Novel quadrotor forward-flight model based on wake interference. AIAA Journal, 53(12), 3522–3533. https://doi.org/10.2514/1.j053011

Diaz P., V., & Yoon, S. (2018). High-fidelity computational aerodynamics of multi-rotor unmanned aerial vehicles. 2018 AIAA Aerospace Sciences Meeting. https://doi.org/10.2514/6.2018-1266

Sattarov, A., Udartsev, E., Rozbytskyi, V., & Zhdanov, O. (2019). Aerodynamic performance improvement of UAV by means of leading-edge vortex generators. https://doi.org/10.1109/apuavd47061.2019.8943866

Pollet, F., Delbecq, S., Budinger, M., & Moschetta, J.-M. (2021). Design optimization of multirotor drones in forward flight. Proceedings of the International Council of the Aeronautical Sciences (ICAS).

Vlachos, S., Pliakos, C., Bliamis, C., & Yakinthos, K. (2024). CFD aided the investigation of a three-blade propeller in multirotor UAV applications. Journal of Physics: Conference Series, 2716, 012064. https://doi.org/10.1088/1742-6596/2716/1/012064

Morozova, N., Trias, F. X., Capdevila, R., Pérez-Segarra, C. D., & Oliva, A. (2020). On the feasibility of affordable high-fidelity CFD simulations for indoor environment design and control. Building and Environment, 184, 107144. https://doi.org/10.1016/j.buildenv.2020.107144

Jirasek, A. (2005). Vortex-generator model and its application to flow control. Journal of Aircraft, 42(6), 1486–1491. https://doi.org/10.2514/1.12220

Gibertini, G., Boniface, J. C., Zanotti, A., Droandi, G., Auteri, F., Gaveriaux, R., & Le Pape, A. (2015). Helicopter drag reduction by vortex generators. Aerospace Science and Technology, 47, 324–339. https://doi.org/10.1016/j.ast.2015.10.004

Nahar, N., Manoj, S., Amit, K. J., & Rahul, J. (2023). Aerodynamic analysis of ramp type vortex generator on NACA2215 airfoil. https://www.irjet.net/archives/V10/i6/IRJET-V10I640.pdf

Shan, H., Li, J., Liu, C., Michael, L., & Maines, B. (2008). Numerical study of passive and active flow separation control over a NACA0012 airfoil. Computers and Fluids, 37(8), 975–992. https://doi.org/10.1016/j.compfluid.2007.10.010

Li, T., Liang, H., Xiang, Z., & Zhang, J. (2023). Numerical study on the effect of vortex generators on the aerodynamic drag of a high-speed train. Fluid Dynamics and Materials Processing, 20(2), 463–473. https://doi.org/10.32604/fdmp.2023.043618

Ali, H., Rasani, M. R., Harun, Z., & Shahid, M. A. (2024). Passive flow-field control using dimples for improved aerodynamic flow over a wing. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-63638-z

Grover, S., Arora, B. B., Khanna, V., Kaushik, T., & Arora, A. (2017). Analysis of drag reduction of bluff body using dimples. International Journal of Advanced Production and Industrial Engineering.

İlter, Y. K., Ünal, U. O., Shi, W., Tokgöz, S., & Atlar, M. (2024). An experimental investigation into the drag reduction performance of dimpled plates in a fully turbulent channel flow. Ocean Engineering, 307, 118198. https://doi.org/10.1016/j.oceaneng.2024.118198

Olayiwola, O. S., Masud, M. H., Faisal, A. K. M., Siddhpura, M., & Siddhpura, A. (2024). Optimization of dimpled surface of NACA 0012 airfoil to enhance the aerodynamic performance. Journal of Propulsion Technology, Tuijin Jishu.

Jenna, E. S., & Sanjivan, M. (2024). The effectiveness of dimples on a NACA airfoil: A numerical investigation conducted via an independent study. 2021 ASEE Virtual Annual Conference Content Access Proceedings. https://doi.org/10.18260/1-2--37854

Domel, A. G., Saadat, M., Weaver, J. C., Haj-Hariri, H., Bertoldi, K., & Lauder, G. V. (2018). Shark skin-inspired designs that improve aerodynamic performance. Journal of the Royal Society Interface, 15(139), 20170828. https://doi.org/10.1098/rsif.2017.0828

Xavier, N., & Naidoo, P. (2024). Computational fluid dynamic analysis of biomimetic supercritical airfoils inspired by sharks: A bionic performance optimization approach for industrial applications. https://doi.org/10.46254/af05.20240236

Bhatia, D., Yadav, D., & Xie, C. (2022). Aerodynamic drag reduction through sharkskin denticle: An experimental approach. Seventh International Conference on Electromechanical Control Technology and Transportation (ICECTT 2022), 16. https://doi.org/10.1117/12.2645374

Hossain, M., & Hyder, S. (2024). Improve the aerodynamics performance of the wing using shark denticles. International Journal of Recent Engineering Science, 11(1), 37–43. https://doi.org/10.14445/23497157/ijres-v11i1p106

Santos, L. M., Lang, A., Wahidi, R., Bonacci, A., Gautam, S., & Parsons, J. (2024). The effect of shortfin mako shark skin at the reattachment of a separated turbulent boundary layer. Bioinspiration & Biomimetics, 19(5), 056012. https://doi.org/10.1088/1748-3190/ad679c

Bhatia, D., Zhao, Y., Yadav, D., & Wang, J. (2021). Drag reduction using biomimetic sharkskin denticles. Engineering, Technology and Applied Science Research, 11(5), 7665–7672. https://doi.org/10.48084/etasr.4347

Rostami, M., & Farajollahi, A. H. (2021). Aerodynamic performance of mutual interaction tandem propellers with ducted UAV. Aerospace Science and Technology, 108, 106399. https://doi.org/10.1016/j.ast.2020.106399

Zhang, T., Qiao, G., Smith, D. A., Barakos, G. N., & Kusyumov, A. (2021). Parametric study of aerodynamic performance of equivalent ducted/un-ducted rotors. Aerospace Science and Technology, 117, 106984. https://doi.org/10.1016/j.ast.2021.106984

Wei, W., Tu, J., Ke, Z., Wang, R., & Xu, B. (2024). Analysis and optimization of the coupling effect for duct-rotor based on aerodynamic performance. Aerospace Science and Technology, 150, 109200. https://doi.org/10.1016/j.ast.2024.109200

Downloads

Published

2025-06-20

How to Cite

Zaidon, M. H., Ishak, I. S., Muhammad Foong , F., & Ali, Z. (2025). Aerodynamic Performance Enhancement of Multi-Rotor UAVs: A Review on Minimizing Drag from Wake Interactions. Jurnal Mekanikal, 48(1), 64–97. https://doi.org/10.11113/jm.v48.557

Issue

Section

Mechanical

Similar Articles

<< < 1 2 3 4 > >> 

You may also start an advanced similarity search for this article.