OPTIMIZATION OF SURFACE ROUGHNESS IN MICRO-MILLING OF NITI SHAPE MEMORY ALLOYS USING MODIFIED DIFFERENTIAL EVOLUTION ALGORITHM
DOI:
https://doi.org/10.11113/jm.v48.650Keywords:
Micro-milling, Nickel-Titanium, Differential Evolution, Surface Roughness, Minimum Quantity LubricationAbstract
This study is conducted to observe the optimal effect of feed per tooth to cutting edge radius ratio, nanoparticle composition in percentage, and cutting environment on the surface roughness (Ra) of Nickel-Titanium (NiTi) Shape Memory Alloys (SMAs) in micro-milling. NiTi alloys are challenging to machine due to their high ductility and temperature sensitivity, often resulting in significant Ra. In this connection, surface quality was enhanced through Minimum Quantity Lubrication (MQL) in combination with solid lubrication using Boron Nitride (BN) nanoparticles. The Taguchi method developed a regression model from the experimental machining data. This Ra regression model was used as a fitness function for the Modified Differential Evolution (MDE) algorithm. Hence, the outcome of this study demonstrated that the MDE optimization technique can identify the process parameters that achieve reduced Ra. MDE application significantly reduces the Ra to 0.7115 µm, which is lower than experimental data (0.7210 µm) and standard Differential Evolution (DE) optimization (0.7122 µm). In conclusion, this research shows how the parameter optimization process can benefit from a combination of regression modeling with the MDE algorithm, yielding the results necessary for sustainable and efficient NiTi SMA machining.
References
T. Duerig, A. Pelton, and D. Stöckel, ‘An overview of nitinol medical applications’, Materials Science and Engineering: A, vol. 273–275, pp. 149–160, 1999.
doi: 10.1016/s0921-5093(99)00294-4.
K. Otsuka and X. Ren, ‘Physical metallurgy of Ti-Ni-based shape memory alloys’, Prog Mater Sci, vol. 50, no. 5, pp. 511–678, 2005.
doi: 10.1016/j.pmatsci.2004.10.001.
M. H. Elahinia, M. Hashemi, M. Tabesh, and S. B. Bhaduri, ‘Manufacturing and processing of NiTi implants: A review’, Prog Mater Sci, vol. 57, no. 5, pp. 911–946, 2012.
doi: 10.1016/j.pmatsci.2011.11.001.
D. Mantovani, ‘Shape memory alloys: Properties and biomedical applications’, JOM, vol. 52, no. 10, pp. 36–44, 2000.
doi: 10.1007/s11837-000-0082-4.
Y. Kaynak, H. E. Karaca, R. D. Noebe, and I. S. Jawahir, ‘Tool-wear analysis in cryogenic machining of NiTi shape memory alloys: A comparison of tool-wear performance with dry and MQL machining’, Wear, vol. 306, no. 1–2, pp. 51–63, 2013.
doi: 10.1016/j.wear.2013.05.011.
K. Weinert and V. Petzoldt, ‘Machining of NiTi based shape memory alloys’, Materials Science and Engineering: A, vol. 378, no. 1-2 SPEC., pp. 180–184, 2004.
doi: 10.1016/j.msea.2003.10.344.
A. Aramcharoen and P. T. Mativenga, ‘Size effect and tool geometry in micromilling of tool steel’, Precis Eng, vol. 33, no. 4, pp. 402–407, 2009.
doi: 10.1016/j.precisioneng.2008.11.002.
X. Liu, R. E. DeVor, and S. G. Kapoor, ‘An analytical model for the prediction of minimum chip thickness in micromachining’, J Manuf Sci Eng, vol. 128, no. 2, pp. 474–481, 2006.
doi: 10.1115/1.2162905.
M. Ansari and I. A. Khan, ‘Investigation on the performance of wire electrical discharge machining (WEDM) using aluminium matrix composites (AMCs) micro-channel’, Engineering Research Express, vol. 5, no. 3, 2023.
doi: 10.1088/2631-8695/acf5ca.
L. Kumar, A. Jain, K. Kumar, and G. K. Sharma, ‘Influence of surface polishing on the degradation behavior of biodegradable Magnesium alloy’, Engineering Research Express, vol. 5, no. 4, 2023.
doi: 10.1088/2631-8695/ad04ac.
D. C. Montgomery, Design and Analysis of Experiments. John Wiley & Sons, 2017.
Philip J. Ross, Taguchi Techniques for Quality Engineering. McGraw-Hill, 1996.
J. Kennedy and R. Eberhart, ‘Particle swarm optimization’, in IEEE International Conference on Neural Networks - Conference Proceedings, 1995, pp. 1942–1948.
C. Y. Nee, M. S. Saad, A. Mohd Nor, M. Z. Zakaria, and M. E. Baharudin, ‘Optimal process parameters for minimizing the surface roughness in CNC lathe machining of Co28Cr6Mo medical alloy using differential evolution’, International Journal of Advanced Manufacturing Technology, vol. 97, no. 1–4, 2018.
doi: 10.1007/s00170-018-1817-0.
R. Storn and K. Price, ‘Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces’, Journal of Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.
doi: 10.1023/A:1008202821328.
M. Z. Zakaria, Z. Mansor, A. Mohd Nor, M. S. Saad, M. S. Mohamad, and R. B. Ahmad, ‘NARMAX model identification using multi-objective optimization differential evolution’, International Journal of Integrated Engineering, vol. 10, no. 7, 2018.
doi: 10.30880/ijie.2018.10.07.018.
M. Z. Zakaria et al., ‘Perturbation parameters tuning of multi-objective optimization differential evolution and its application to dynamic system modeling’, J Teknol, vol. 75, no. 11, 2015.
doi: 10.11113/jt.v75.5335.
J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Zumer, ‘Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems’, IEEE Transactions on Evolutionary Computation, vol. 10, no. 6, pp. 646–657, 2006.
doi: 10.1109/TEVC.2006.872133.
Y. Zhang, C. Li, D. Jia, D. Zhang, and X. Zhang, ‘Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding’, Int J Mach Tools Manuf, vol. 99, pp. 19–33, Dec. 2015.
doi: 10.1016/J.IJMACHTOOLS.2015.09.003.
S. Das, S. S. Mullick, and P. N. Suganthan, ‘Recent advances in differential evolution-An updated survey’, Swarm Evol Comput, vol. 27, pp. 1–30, 2016.
doi: 10.1016/j.swevo.2016.01.004.
Z. A. Zailani and P. T. Mativenga, ‘Boron and graphene nanoparticles as solid lubricant in micro milling of nickel titanium shape memory alloys’, International Journal of Machining and Machinability of Materials, vol. 24, no. 3–4, pp. 262–279, 2022.
doi: 10.1504/ijmmm.2022.125199.
A. Kumar and S. K. Mallik, ‘Measurement-based ZIP load modelling using opposition based differential evolution optimization’, Engineering Research Express, vol. 5, no. 3, 2023.
doi: 10.1088/2631-8695/ace81c.
J. Zou and X. Zuo, ‘Active suspension LQR control based on modified differential evolutionary algorithm optimization’, Journal of Vibroengineering, vol. 26, no. 5, pp. 1150–1165, 2024.
doi: 10.21595/jve.2024.23953.
V. S. Sharma, M. Dogra, and N. M. Suri, ‘Cooling techniques for improved productivity in turning’, Int J Mach Tools Manuf, vol. 49, pp. 435–453, 2009, [Online]. Available: https://api.semanticscholar.org/CorpusID:110396290
N. R. Dhar, M. W. Islam, S. Islam, and M. A. H. Mithu, ‘The influence of minimum quantity of lubrication (MQL) on cutting temperature, chip and dimensional accuracy in turning AISI-1040 steel’, J Mater Process Technol, vol. 171, no. 1, pp. 93–99, Jan. 2006.
doi: 10.1016/J.JMATPROTEC.2005.06.047.
N. Suresh Kumar Reddy and P. Venkateswara Rao, ‘Experimental investigation to study the effect of solid lubricants on cutting forces and surface quality in end milling’, Int J Mach Tools Manuf, vol. 46, no. 2, pp. 189–198, Feb. 2006.
doi: 10.1016/J.IJMACHTOOLS.2005.04.008.
A. J. Asalekar and D. V. A. Rama Sastry, ‘Enhancing high-speed CNC milling performance of Ti6Al4V alloy through the application of ZnO-Ag hybrid nanofluids’, Engineering Research Express, vol. 6, no. 2, 2024.
doi: 10.1088/2631-8695/ad476d.
A. Mohammed S. Ahmed and S. K. Shather, ‘Optimizing the five magnetic abrasive finishing factors on surface quality using Taguchi-based grey relational analysis’, Engineering Research Express, vol. 6, no. 1, 2024.
doi: 10.1088/2631-8695/ad2d99.
W. S. Sakr, R. A. EL-Sehiemy, and A. M. Azmy, ‘Adaptive differential evolution algorithm for efficient reactive power management’, Applied Soft Computing Journal, vol. 53, pp. 336–351, 2017.
doi: 10.1016/j.asoc.2017.01.004.
O. Muribwathoho, V. Msomi, and S. Mabuwa, ‘An Analysis Comparing the Taguchi Method for Optimizing the Process Parameters of AA5083/Silicon Carbide and AA5083/Coal Composites That Are Fabricated via Friction Stir Processing’, Applied Sciences (Switzerland), vol. 14, no. 20, 2024.
doi: 10.3390/app14209616.
E. Reyes-Davila, E. H. Haro, A. Casas-Ordaz, D. Oliva, and O. Avalos, ‘Differential Evolution: A Survey on Their Operators and Variants’, Archives of Computational Methods in Engineering, vol. 32, no. 1, pp. 83–112, 2025.
doi: 10.1007/s11831-024-10136-0.
H. M. J. Mustafa, M. Ayob, M. Z. A. Nazri, and G. Kendall, ‘An improved adaptive memetic differential evolution optimization algorithms for data clustering problems’, PLoS One, vol. 14, no. 5, 2019.
doi: 10.1371/journal.pone.0216906.
I. S. Jawahir et al., ‘Surface integrity in material removal processes: Recent advances’, CIRP Ann Manuf Technol, vol. 60, no. 2, pp. 603–626, 2011.
doi: 10.1016/j.cirp.2011.05.002.
Downloads
Published
How to Cite
Issue
Section
License
Copyright of articles that appear in Jurnal Mekanikal belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions or any other reproductions of similar nature.















