Recent Research on Water Management Problem in Proton Exchange Membrane Fuel Cells: A Brief Review
Keywords:
Proton exchange membrane fuels cell (PEMFC), gas diffusion layer, water flooding, reactants, water removalAbstract
Proton exchange membrane fuels cell (PEMFC) is fuel cell that uses hydrogen and oxygen as its fuel and the most interesting thing about this cell is that it only produces liquid water as its main by-product. This makes PEMFCs as one of the promising and interesting sources of power for the future because they are fully in compliance with the environmental policies and goal of this generation. However, commercialization and full harnessing of this novel cell has yet to commence despite showing some strong prospects and potentials. This may be largely due to the technical issues surrounding the operation of PEMFC. The two main issues that pose serious concern are water and thermal managements. Concerning the water management, two important critical issues that are inter-related involve cell dehydration and water flooding, both of which have adverse effects on the performances of these cells. Subsequently, these concerns draw the attention of the research community, where a large number of research has been carried out employing different methods and approaches to solve this problem. In this review, some of the recent advances in the research on water flooding and removal problems in PEMFC are reviewed and their research findings reported, especially with regard to the factors that affect the water flooding and removal, influence and effects of some of the scientific approaches to solving these problems. These factors include those emanating from the gas flow channel design, use of acoustic vibration and gas diffusion layer modification, all of which are reported in this study.
References
Virat P., Battrell L., Anderson R., Zhu N. and Zhang L., 2019. Investigating Effect of Different Gas Diffusion Layers on Water Droplet Characteristics for Proton Exchange Membrane (PEM) Fuel Cells, International Journal of Hydrogen Energy, 44(33): 18340-18350. doi: 10.1016/j.ijhydene.2019.05.111.
Mortazavi M., Santamaria A., Benner D., Jingru Z. and Chauhan V., 2019a. Enhanced Water Removal from PEM Fuel Cells Using Acoustic Pressure Waves, Journal of The Electrochemical Society, 166(7): F3143-F3153. doi: 10.1149/2.0211907jes.
Wang J., 2015. Theory and Practice of Flow Field Designs for Fuel Cell Scaling-up: A Critical Review, Applied Energy, 157: 640-663. doi: 10.1016/j.apenergy.2015.01.032.
Kim J.H., Yeon Jo, Yoo C., Eun A., Jang J.H., Kim H.J., Lim T-H., . . . Son I.J., 2010. Effects of Cathode Inlet Relative Humidity on PEMFC Durability during Startup–Shutdown Cycling, Journal of The Electrochemical Society, 157(5): B633. doi: 10.1149/1.3327888.
Ji M. and Wei Z., 2009. A Review of Water Management in Polymer Electrolyte Membrane Fuel Cells, Energies, 2(4): 1057-1106. doi: 10.3390/en20401057.
Ijaodola O.S., El- Hassan Z., Ogungbemi E., Khatib F.N., Wilberforce T., Thompson, J. and Olabi A.G., 2019. Energy Efficiency Improvements by Investigating the Water Flooding Management on Proton Exchange Membrane Fuel Cell (PEMFC), Energy, 179: 246-267. doi: 10.1016/j.energy.2019.04.074.
Chen R., Qin Y., Ma S. and Du Q., 2019a. Numerical Simulation of Liquid Water Emerging and Transport in the Flow Channel of PEMFC using the Volume of Fluid Method, International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2019.07.169.
Chen H., Liu B., Zhang T. and Pei P., 2019b. Influencing Sensitivities of Critical Operating Parameters on PEMFC Output Performance and Gas Distribution Quality under Different Electrical Load Conditions, Applied Energy, 255: 113849. doi: 10.1016/ j.apenergy.2019.113849.
Mortazavi M., Heidari M. and Niknam S.A., 2019b. A Discussion About Two-Phase Flow Pressure Drop in Proton Exchange Membrane Fuel Cells, Heat Transfer Engineering, 1-16. doi: 10.1080/01457632.2019.1670460.
Anyanwu I.S., Hou Y., Xi F., Wang X., Yin Y., Du Q. and Jiao K., 2019. Comparative Aanalysis of Two-phase Flow in Sinusoidal Channel of Different Geometric Configurations with Application to PEMFC, International Journal of Hydrogen Energy, 44(26): 13807-13819. doi: 10.1016/j.ijhydene.2019.03.213.
Park G-G., Sohn Y-J., Yang T-H., Yoon Y-G., Lee W-Y. and Kim C-S., 2004. Effect of PTFE Contents in the Gas Diffusion Media on the Performance of PEMFC, Journal of Power Sources, 131(1-2): 182-187. doi: 10.1016/j.jpowsour.2003.12.037.
Shimpalee S. and Vanzee J., 2007. Numerical Studies on Rrib & Channel Dimension of Flow-field on PEMFC Performance, International Journal of Hydrogen Energy, 32(7): 842-856. doi: 10.1016/j.ijhydene.2006.11.032.
Wang C., Zhang Q., Lu J., Shen S., Yan X., Zhu F., . . . Zhang J., 2017. Effect of Height/width-tapered Flow Fields on the Cell Performance of Polymer Electrolyte Membrane Fuel Cells, International Journal of Hydrogen Energy, 42(36): 23107-23117. doi: 10.1016/j.ijhydene.2017.07.136.
Soopee A., Sasmito A.P. and Shamim T., 2019. Water Droplet Dynamics in a Dead-end Anode Proton Exchange Membrane Fuel Cell, Applied Energy, 233-234: 300-311. doi: 10.1016/j.apenergy.2018.10.001.
Palan V., Shepard W.S. and Williams K.A., 2006. Removal of Excess Product Water in a PEM Fuel Cell Stack by Vibrational and Acoustical Methods, Journal of Power Sources, 161(2): 1116-1125. doi: 10.1016/j.jpowsour.2006.06.021.
Han C. and Chen Z., 2018. Numerical Simulations of Two-phase Flow in a Proton-exchange Membrane Fuel Cell Based on the Generalized Design Method, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(10): 1253-1271. doi: 10.1080/15567036.2018.1545002.
Guo F., Yang X., Jiang H., Zhu Y. and Li C., 2020. An Ultrasonic Atomization Spray Strategy for Constructing Hydrophobic and Hydrophilic Synergistic Surfaces as Ggas Diffusion Layers for Proton Exchange Membrane Fuel Cells, Journal of Power Sources, 451: 227784. doi: 10.1016/j.jpowsour.2020.227784.
Guo X., Zeng Y., Wang Z., Qu L., Shao Z., Yuan Z. and Yi B., 2016a. Improvement of PEMFC Performance and Endurance by Employing Continuous Silica Film Incorporated Water Transport Plate, Electrochimica Acta, 191: 116-123. doi: 10.1016/ j.electacta.2016.01.059.
Zhang G., Fan L., Sun J. and Jiao K., 2017. A 3D Model of PEMFC Considering Detailed Multiphase Flow and Anisotropic Transport Properties, International Journal of Heat and Mass Transfer, 115: 714-724. doi: 10.1016/j.ijheatmasstransfer.2017.07.102.
Hou Y., Zhang G., Qin Y., Du Q. and Jiao K., 2017. Numerical Simulation of Gas Liquid Two-phase Flow in Anode Channel of Low-temperature Fuel Cells, International Journal of Hydrogen Energy, 42(5): 3250-3258. doi: 10.1016/j.ijhydene.2016.09.219.
Kahraman H., Haşimoğlu C., Çevik İ. and Murcak A., 2017. A Different Flow Field Design Approach for Performance Improvement of a PEMFC, Acta Physica Polonica A, 131(3): 484-487. doi: 10.12693/APhysPolA.131.484.
Yin Y., Shangguan X., Ma X., Zhang J. and Qin Y., 2019. Influence of Corner Structure of Fuel Cell Serpentine Channel on Water Removal, International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2019.08.200.
Yan W-M., Chen C-Y., Mei S-C., Soong C-Y. and Chen F., 2006. Effects of Operating Conditions on Cell Performance of PEM Fuel Cells with Conventional or Interdigitated Flow Field, Journal of Power Sources, 162(2): 1157-1164. doi: 10.1016/ j.jpowsour.2006.07.044.
Wang H-N., Zhu X., Zhang B., Ye D-D., Chen R., Liao Q., . . . Djilali N., 2019a. Two-phase Computational Modelling of a Membraneless Microfluidic Fuel Cell with a Flow-through Porous Anode, Journal of Power Sources, 420: 88-98. doi: 10.1016/ j.jpowsour.2019.02.081.
Wang B., Chen W., Pan F., Wu S., Zhang G., Park J.W., . . . Jiao K., 2019b. A Dot Matrix and Sloping Baffle Cathode Flow Field of Proton Exchange Membrane Fuel Cell, Journal of Power Sources, 434: 226741. doi: 10.1016/j.jpowsour.2019.226741.
Bao Z., Niu Z. and Jiao K., 2019. Analysis of Single- and Two-phase Flow Characteristics of 3-D Fine Mesh Flow Field of Proton Exchange Membrane Fuel Cells, Journal of Power Sources, 438: 226995. doi: 10.1016/j.jpowsour.2019.226995.
Thitakamol V., Therdthianwong A. and Therdthianwong S., 2011. Mid-baffle Interdigitated Flow Fields for Proton Exchange Membrane Fuel Cells, International Journal of Hydrogen Energy, 36(5): 3614-3622. doi: 10.1016/j.ijhydene.2010.12.060.
Vijayakrishnan M.K., Palaniswamy K., Ramasamy J., Kumaresan T., Manoharan K., Raj R., Thundil K., . . . Yi S-C., 2019. Numerical and Experimental Investigation on 25 cm2 and 100 cm2 PEMFC with Novel Sinuous Flow Field for Effective Water Removal and Enhanced Performance, International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2019.05.205.
Xu Y., Peng L., Yi P. and Lai X., 2019. Numerical Investigation of Liquid Water Dynamics in Wave-like Gas Channels of PEMFCs, International Journal of Energy Research, 43(3): 1191-1202. doi: 10.1002/er.4353.
Guo H., Liu X., Zhao J.F., Ye F. and Ma C.F., 2016b. Effect of Low Gravity on Water Removal Inside Proton Exchange Membrane Fuel Cells (PEMFCs) with Different Flow Channel Configurations, Energy, 112: 926-934. doi: 10.1016/j.energy.2016.07.006.
Molaeimanesh G.R. and Akbari M.H., 2016. Role of Wettability and Water Droplet Size during Water Removal from a PEMFC GDL by Lattice Boltzmann Method, International Journal of Hydrogen Energy, 41(33): 14872-14884. doi: 10.1016/j.ijhydene.2016.06.252
Karthikeyan M., Karthikeyan P., Muthukumar M., Magesh K.V., Thanarajan K., Maiyalagan T., Hong C-W., Jothi V.R. and Yi S-C., 2020. Adoption of Novel Porous Inserts in the Flow Channel of PEM Fuel Cell for the Mitigation of Cathodic Flooding, International Journal of Hydrogen Energy, 45(13): 7863-7872. doi: 10.1016/ j.ijhydene.2019.08.151.
Qin Y., Yin Y., Jiao K. and Du Q., 2018. Effects of Needle Orientation and Gas Velocity on Water Transport and Removal in a Modified PEMFC Gas Flow Channel Having a Hydrophilic Needle, International Journal of Energy Research, 43(7): 2538-2549. doi: 10.1002/er.4116.
Wan Z., Quan W., Yang C., Yan H., Chen X., Huang T., . . . Chan S., 2020. Optimal Design of a Novel M-like Channel in Bipolar Plates of Proton Exchange Membrane Fuel Cell Based on Minimum Entropy Generation, Energy Conversion and Management, 205: 112386. doi: 10.1016/j.enconman.2019.112386.
Mehdi A-T., Mohamed E.H., Kjeang E. and Bahrami M., 2015. An Aanalytical Relationship for Calculating the Effective Diffusivity of Micro-porous Layers, International Journal of Hydrogen Energy, 40(32): 10242-10250. doi: 10.1016/ j.ijhydene.2015.06.067.
Nanadegani F.S., Lay E.N. and Sunden B., 2019. Effects of an MPL on Water and Thermal Management in a PEMFC, International Journal of Energy Research, 43(1): 274-296. doi: 10.1002/er.4262.
Carcadea E., Varlam M., Ismail M., Ingham D.B., Marinoiu A., Raceanu M., . . . Daniela I-E., 2019. PEM Fuel Cell Performance Improvement Through Numerical Optimization of the Parameters of the Porous Layers, International Journal of Hydrogen Energy, 45(14): 7968-7980. doi: 10.1016/j.ijhydene.2019.08.219.
Lin R., Diao X., Ma T., Tang S., Chen L. and Liu D., 2019. Optimized Microporous Layer for Improving Polymer Exchange Membrane Fuel Cell Performance using Orthogonal Test Design, Applied Energy, 254: 113714. doi: 10.1016/j.apenergy.2019.113714.
Pourrahmani H., Moghimi M. and Siavashi M., 2019. Thermal Management in PEMFCs: The Respective Effects of Porous Media in the Gas Flow Channel, International Journal of Hydrogen Energy, 44(5): 3121-3137. doi: 10.1016/j.ijhydene.2018.11.222.
Salimi N., Fereshteh N., Lay E. and Sunden B., 2020. Computational Analysis of the Impact of a Micro Porous Layer (MPL) on the Characteristics of a High Temperature PEMFC, Electrochimica Acta, 333: 135552. doi: 10.1016/j.electacta.2019.135552.
Tseng C-J. and Lo S-K., 2010. Effects of Microstructure Characteristics of Gas Diffusion Layer and Microporous Layer on the Performance of PEMFC, Energy Conversion and Management, 51(4): 677-684. doi: 10.1016/j.enconman.2009.11.011.
Pasaogullari U. and Wang C-Y., 2004. Two-phase Transport and the Role of Micro-porous Layer in Polymer Electrolyte Fuel Cells, Electrochimica Acta, 49(25): 4359-4369. doi: 10.1016/j.electacta.2004.04.027.
Chen G., Zhang G., Guo L. and Liu H., 2016. Systematic Study on the Functions and Mechanisms of Micro Porous Layer on Water Transport in Proton Exchange Membrane Fuel Cells, International Journal of Hydrogen Energy, 41(9): 5063-5073. doi: 10.1016/j.ijhydene.2016.01.074.
Ferreira R.B., Falcão D.S., Oliveira V.B. and Pinto A.M.F.R., 2017. Experimental Study on the Membrane Electrode Assembly of a Proton Exchange Membrane Fuel Cell: Effects of Microporous Layer, Membrane Thickness and Gas Diffusion Layer Hydrophobic Treatment, Electrochimica Acta, 224: 337-345. doi: 10.1016/j.electacta.2016.12.074.
Kang K. and Ju H., 2009. Numerical Modeling and Analysis of Micro-porous Layer Effects in Polymer Electrolyte Fuel Cells, Journal of Power Sources, 194(2): 763-773. doi: 10.1016/j.jpowsour.2009.05.046.
Wan Z., Chang H., Shu S., Wang Y. and Tang H., 2014. A Review on Cold Start of Proton Exchange Membrane Fuel Cells, Energies, 7(5): 3179-3203. doi: 10.3390/en7053179.
Yang Z., Du Q., Jia Z., Yang C. and Jiao K., 2019. Effects of Operating Conditions on Water and Heat Management by a Transient Multi-dimensional PEMFC System Model, Energy, 183: 462-476. doi: 10.1016/j.energy.2019.06.148.
Misran E., Hassan N.S.M., Daud W.R.W., Majlan E.H. and Rosli M.I., 2013. Water Transport Characteristics of a PEM Fuel Cell at Various Operating Pressures and Temperatures, International Journal of Hydrogen Energy, 38(22): 9401-9408. doi: 10.1016/j.ijhydene.2012.12.076.
Downloads
Published
How to Cite
Issue
Section
License
Copyright of articles that appear in Jurnal Mekanikal belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions or any other reproductions of similar nature.