PARTICLE SWARM OPTIMIZATION AND CFD ANALYSIS OF A HEAT SINK FOR FORCED CONVECTIVE COOLING OF A DC/AC INVERTER

Authors

  • Francis Onoroh University of lagos, Akoka, Yaba, Lagos
  • Larry Orobome Agberegha Department of Mechanical Engineering, Federal University of Petroleum Resources, Delta state, Nigeria
  • Adeyinka Abdulquadri Oluwo

DOI:

https://doi.org/10.11113/jm.v47.475

Keywords:

Heat sink, power inverter, thermo-mechanical stress, failure, dissipation

Abstract

Power inverters play a crucial role in converting DC voltage and current to AC voltage and current. Its efficient operation relies on effective thermal management of the semiconductor devices, such as the IRF 3205 MOSFET chip which facilitate the switching operations to prevent thermo-mechanical stress that could to failure. This research developed and optimize a heat sink for an IRF 3205 MOSFET chip in a 3.5 KVA power inverter, using the Particle Swarm Optimization technique and experimented with a 3.5 KVA 24 V power inverter operating a 1.5HP air-conditioning unit. The heat sink geometry has 26 fins, 4 mm fin thickness, 40 mm fin height, 3 mm fin spacing, 2 mm fin base thickness, 179 mm length, 80 mm width and a thermal resistance of 60.75 °C/W. The thermal performance was evaluated using ANSYS Computational Fluid Dynamics (CFD) and results showed maximum base temperature of 65.85°C and experimental temperature of 64°C after two hours of steady operation dissipating heat of 45W. The results from both numerical and experimental data demonstrate the effectiveness of the optimized heat sink in maintaining the chip's temperature below its maximum working threshold of 170°C.

References

Li J., Yang L. (2023). Recent Development of Heat Sink and Related Development of Heat Sink and Related Design Methods. Energies, 16, 7133: 1-23.

Wong M., Owen I., Sutcliffe C. J., Puri A. (2009). Convective Heat Transfer and Pressure Losses across Novel Heat Sinks Fabricated by Selective Laser Melting. International Journal of Heat Mass Transfer, 52: 281–288.

Prabhakar P. S., Ghuge N. C. (2015). Thermal Design and Analysis of Heat Sink Optimization and its Comparison with Commercially Available Heat Sink. International Journal of Engineering Research and Technology, 4(12): 210 - 216.

Ekpu M., Bhatti R., Ekere N., Mallik S., Amalu E,. Otiaba K. (2011). Investigation of Effects of Heat Sinks on Thermal Performance of Microelectronic Package, 3rd IEEE International Conference on Adaptive Science and Technology (ICAST), Chatham,Kent,United Kingdom: 127-132.

Onoroh F., Adewumi O. O., Ogbonnaya M. (2019). Characterization of a Finned Heat Sink for a Power Inverter. Journal of Physics: Conf. Series: 1-15.

Chinthavali M. S., Wang Z. J. (2018). 30-kW All-SiC Inverter with 3D-Printed Air-Cooled Heatsinks for Plug-in and Full Electric Vehicle Applications. Oak Ridge National Laboratory, US Department of Energy.

Jonsson H., Moshfegh B. (2001). Modeling of the Thermal and Hydraulic Performance of Plate Fin, Strip Fin, and Pin Fin Heat Sinks-Influence of Flow Bypass. Components and Packaging Technologies. IEEE Transactions, 24(2): 142-149.

Arularasan R., Velraj, R. (2008). CFD Analysis in a Heat Sink for Cooling of Electronic Devices. International Journal of the Computer, the Internet and Management, 16(3): 1-11.

Shadlaghani A., Tavakoli, M. R., Farzaneh M. Salimpour M. R. (2016). Optimization of Triangular Fins with and without Longitudinal Perforate for Thermal Performance Enhancement. Journal of Mechanical Science and Technology, 30(4): 1903-1910.

Jaffal H. M. (2017). The Effect of Fin Design on Thermal Performance of Heat Sink. Journal of Engineering, 5(23): 123–146.

Ibrahim T. K., Mohammed M. N., Mohammed M. K., Najafi, G., Sidik N. A. C., Basrawi F., Abdalla A. N., Hoseini S. S. (2018). Experimental Study on the Effect of Perforations Shapes on Vertical Heated Fins Performance under Forced Convection Heat Transfer. International Journal of Heat Mass Transfer, 118: 832–846.

Kulkarni V. M., Dotihal B. (2015). CFD and Conjugate Heat Transfer Analysis of Heat Sinks with Different Fin Geometries Subjected to Forced Convection used in Electronics Cooling. International Journal of Research in Engineering and Technology, 4(6): 158-163.

Mjallal I., Farhat H., Hammoud M., Ali S., Shaer A.A., Assi A. (2018). Cooling Performance of Heat Sinks used in Electronic Devices. MATEC Web of Conference, 171: 1-4.

Luo J., Guan S., Wan B., Jiang M., Fu G. (2021). Research on IGBT Bonding Wires Crack Propagation at Macro and Micro Scales. IEEE Access, 9: 106270-106282.

Shammas N. Y. A. (2003). Present problems of Power Module packaging technology. Microelectronics reliability, 43(4): 519-527.

Zeanh A., Dalverny O., Karama M., Woirgard E., Azzopardi S., Bouzourene A., Casutt J., Mermet-Guyennet. (2008). Reliability of the connections used in IGBT modules in aeronautical environment. International Journal for Simulation and Multidisciplinary Design optimization, 2: 123-133.

An T., Zheng X., Qin F., Dai Y., Gong Y., Chen P. (2023). Macro-Mesoscale Modeling of the Evolution of the Surface Roughness of the Al Metallization Layer of an IGBT Module during Power Cycling. Materials, 16(5): 1936.

Rahman M. K., Musa A. M. M., Neher B., Patwary K. A., Rahman M. A., Islam M. S. (2016). A Review of the Study on the Electro-migration and Power Electronics. Journal of Electronics Cooling and Thermal Control, 6: 19-31.

Lall P., Pecht M.G., Hakim E.B. (2020). Influence of Temperature on Microelectronics and System Reliability: A Physics of Failure. CRC Press London.

Jasim H. H. (2020). Development of Natural Convection Heat Transfer in Heat Transfer using a New Fin Design. Journal of Mechanical Engineering Research and Development, 43(3).

Habib N., Siddiqi M. U. R., Tahir M. (2020). Thermal Analysis of Proposed Heat Sink Design under Natural Convection for the Thermal Management of Electronics. Thermal Science, 26(2B): 1487-1501.

Lee S. (1995). Optimum Design and Selection of Heat Sinks. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 18(4): 812-817.

Bhandari, V. S.,Kulkarni, S. H. (2019). Optimization of Heat Sink for Thyristor Using Particle Swarm Optimization. Results in Engineering, 4: 1-4.

Kennedy, J., Eberhart, R., (1995). Particle Swarm Optimization. Proceedings IEEE International Conference Neural Network: 1942-1948.

Pratihar D. K. (2015). Soft Computing Fundamentals and Applications. Revised edition, Alpha Science International Limited, Oxford: 87-88.

Versteeg H. K., Malalasekera W. (2007). An Introduction to Computational Fluid Dynamics:Finite Volume Method. 2nd Edition, Pearson Education Limited, England: 1-7.

ANSYS FLUENT 12.0 User’s Guide (enea.it). [Accessed: 10th November, 2023].

Downloads

Published

2024-06-16

How to Cite

Onoroh, F., Agberegha, L. O., & Oluwo, A. A. (2024). PARTICLE SWARM OPTIMIZATION AND CFD ANALYSIS OF A HEAT SINK FOR FORCED CONVECTIVE COOLING OF A DC/AC INVERTER. Jurnal Mekanikal, 47(1), 51–65. https://doi.org/10.11113/jm.v47.475

Issue

Section

Mechanical

Similar Articles

<< < 17 18 19 20 21 22 23 24 25 26 > >> 

You may also start an advanced similarity search for this article.