A MINI REVIEW ON THE EFFECTS OF SURFACE ROUGHNESS IN MICROFIUIDICS CHANNELS

Authors

  • Muhammad Luqman Mohamed Rijal Centre of Mechanical Engineering Studies, Universiti Teknologi MARA Cawangan Pulau Pinang, Pematang Pauh Campus, 13500 Permatang Pauh, Penang, Malaysia
  • Azmi Mohamed Yusof Centre of Mechanical Engineering Studies, Universiti Teknologi MARA Cawangan Pulau Pinang, Pematang Pauh Campus, 13500 Permatang Pauh, Penang, Malaysia
  • Rizal Mohamed Noor Centre of Mechanical Engineering Studies, Universiti Teknologi MARA Cawangan Pulau Pinang, Pematang Pauh Campus, 13500 Permatang Pauh, Penang, Malaysia
  • Ahmad Faiz Zubair Centre of Mechanical Engineering Studies, Universiti Teknologi MARA Cawangan Pulau Pinang, Pematang Pauh Campus, 13500 Permatang Pauh, Penang, Malaysia

DOI:

https://doi.org/10.11113/jm.v47.548

Keywords:

Surface Roughness, Microchannels, Fabrication Methods, CNC precision machining and 3D printing.

Abstract

The effects of surface roughness at low Reynolds numbers are more pronounced and critical in microchannels due to the relative size of roughness to channel dimensions. Surface roughness in microfluidic channels originates from the machining process during fabrication. This review examines how surface roughness, resulting from various manufacturing processes, influences the performance of microfluidic devices. Different patterns of surface roughness generated through techniques such as photolithography, etching, precision machining, and 3D printing are highlighted. These techniques yield distinct surface characteristics that affect critical microchannel properties, including fluid flow, pressure drop, and stress distribution. In addition to that, specific fabrication methods can minimize surface roughness, enhancing the performance of microchannels for applications in diagnostics, lab-on-a-chip systems, and small-scale heat exchangers are addressed. The review provides insights into selecting optimal fabrication techniques to achieve desired performance characteristics in microfluidic devices.

References

Lim G. S., Chang J. S., Lei Z., Wu R., Wang Z., Cui K., & Wong S. (2015). A lab-on-a-chip system integrating tissue sample preparation and multiplex RT-qPCR for gene expression analysis in point-of-care hepatotoxicity assessment. Lab on a Chip, 15(20), 4032–4043.

Whitesides, G. M. (2006). The origins and the future of microfluidics. Nature, 442(7101), 368–373.

Kandlikar, S. G., Colin, S., Peles, Y., Garimella, S., Pease, R. F., Brandner, J. J., & Tuckerman, D. B. (2013). Heat transfer in microchannels - 2012 status and research needs. Journal of Heat Transfer, 135(9), 1–18.

Niculescu, A. G., Chircov, C., Bîrcă, A. C., & Grumezescu, A. M. (2021). Fabrication and applications of microfluidic devices: A review. International Journal of Molecular Sciences, 22(4), 1–26.

Kiriiri, G. K., Njogu, P. M., & Mwangi, A. N. (2020). Exploring different approaches to improve the success of drug discovery and development projects: a review. Future Journal of Pharmaceutical Sciences, 6(1).

Payne, E. M., Holland-Moritz, D. A., Sun, S., & Kennedy, R. T. (2020). High-throughput screening by droplet microfluidics: Perspective into key challenges and prospects. Lab on a Chip, 20(13), 2247–2262.

Kawagoe, H., Ando, J., Asanuma, M., Dodo, K., Miyano, T., Ueda, H., Sodeoka, M., & Fujita, K. (2021). Multiwell Raman plate reader for high-throughput biochemical screening. Scientific Reports, 11(1), 1–10.

Azizipour, N., Avazpour, R., Rosenzweig, D. H., Sawan, M., & Ajji, A. (2020). Evolution of biochip technology: A review from lab-on-a-chip to organ-on-a-chip. Micromachines, 11(6), 1–15.

Amirifar, L., Shamloo, A., Nasiri, R., de Barros, N. R., Wang, Z. Z., Unluturk, B. D., Libanori, A., Ievglevskyi, O., Diltemiz, S. E., Sances, S., Balasingham, I., Seidlits, S. K., & Ashammakhi, N. (2022). Brain-on-a-chip: Recent advances in design and techniques for microfluidic models of the brain in health and disease. Biomaterials, 285(October 2021), 121531.

Ghezzi, M., Pescina, S., Padula, C., Santi, P., Del Favero, E., Cantù, L., & Nicoli, S. (2021). Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. Journal of Controlled Release, 332(January), 312–336.

Scott, S. M., & Ali, Z. (2021). Fabrication methods for microfluidic devices: An overview. Micromachines, 12(3).

Peng, Y., Zarringhalam, M., Barzinjy, A. A., Toghraie, D., & Afrand, M. (2020). Effects of surface roughness with the spherical shape on the fluid flow of argon atoms flowing into the microchannel, under boiling condition using molecular dynamic simulation. Journal of Molecular Liquids, 297, 111650.

Mandev, E., & Manay, E. (2022). Effects of surface roughness in multiple microchannels on mixed convective heat transfer. Applied Thermal Engineering, 217, 119102.

Lalegani, F., Saffarian, M. R., Moradi, A., & Tavousi, E. (2018b). Effects of different roughness elements on friction and pressure drop of laminar flow in microchannels. International Journal of Numerical Methods for Heat & Fluid Flow, 28(7), 1664–1683.

Wu, H., Chen, W., & Jiang, Z. (2023). Slip boundary conditions for rough surfaces. Chinese Journal of Aeronautics, 36(5), 239–249.

Sun, W., Zhang, X., Yao, C., Wang, Q., Jin, N., Lv, H., & Zhao, Y. (2021). Hydrodynamic characterization of continuous flow of Pickering droplets with solid nanoparticles in microchannel reactors. Chemical Engineering Science, 245.

Faraji Rad, Z., Prewett, P. D., & Davies, G. J. (2021). High-resolution two-photon polymerization: the most versatile technique for the fabrication of microneedle arrays. Microsystems and Nanoengineering, 7(1).

Gracka, M., Lima, R., Miranda, J. M., Student, S., Melka, B., & Ostrowski, Z. (2022). Red blood cells tracking and cell-free layer formation in a microchannel with hyperbolic contraction: A CFD model validation. Computer Methods and Programs in Biomedicine, 226, 107117.

Kasi, D. G., de Graaf, M. N. S., Motreuil-Ragot, P. A., Frimat, J. P. M. S., Ferrari, M. D., Sarro, P. M., Mastrangeli, M., van den Maagdenberg, A. M. J. M., Mummery, C. L., & Orlova, V. V. (2022). Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography. Micromachines, 13(1).

Lee, C. H., Jiang, K., & Davies, G. J. (2007). Sidewall roughness characterization and comparison between silicon and su-8 microcomponents. Materials Characterization, 58(7), 603–609.

Yang, D., Shi, Y., & Yu, X. (2024). Handbook of Integrated Circuit Industry. Handbook of Integrated Circuit Industry, 1717–1742.

Alrifaiy, A., Lindahl, O. A., & Ramser, K. (2012). Polymer-based microfluidic devices for pharmacy, biology and tissue engineering. Polymers, 4(3), 1349–1398.

Huang, H. C. (2022). Metal-assisted chemical etching of β-gallium oxide and its device applications (Doctoral dissertation, University of Illinois at Urbana-Champaign)

Huff, M. (2021). Recent Advances in Reactive Ion Etching and Applications of Micromachines, 12, 991.

Deng, D., Zeng, L., & Sun, W. (2021). A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks. International Journal of Heat and Mass Transfer, 175, 121332.

Cheng, X., Yao, Y., & Wu, H. (2021). An experimental investigation of flow boiling characteristics in silicon-based groove-wall microchannels with different structural parameters. International Journal of Heat and Mass Transfer, 168, 120843

Zheng, Y., Liu, J., Zhang, R., Cumont, A., Wang, J., Wei, J., Li, C., & Ye, H. (2019). Fast smoothing on diamond surface by inductively coupled plasma reactive Ion Etching. Journal of Materials Research, 35(5), 462–472.

Aralekallu, S., Boddula, R., & Singh, V. (2023). Development of glass-based microfluidic devices: A review on its fabrication and biologic applications. Materials and Design, 225, 111517.

Toifl, A., Quell, M., Klemenschits, X., Manstetten, P., Hossinger, A., Selberherr, S., & Weinbub, J. (2020). The Level-Set Method for Multi-Material Wet Etching and Non-Planar Selective Epitaxy. IEEE Access, 8, 115406–115422.

Zhong, Z. W. (2021). Processes for environmentally friendly and/or cost-effective manufacturing. Materials and Manufacturing Processes, 36(9), 987–1009.

Airola, K., Mertin, S., Likonen, J., Hartikainen, E., Mizohata, K., Dekker, J., Thanniyil Sebastian, A., & Pensala, T. (2022). High-fidelity patterning of AlN and ScAlN thin films with wet chemical etching. Materialia, 22(December 2021), 101403.

Kim, K., Lee, S., Lee, J., & Park, S. (2010). Effect of etching solutions on surface roughness of silicon wafer. Journal of Semiconductor Technology and Science, 10(2), 123-130.

Purohit, S., Swarnalatha, V., Pandey, A. K., & Pal, P. (2022). Wet anisotropic etching characteristics of Si{111} in NaOH-based solution for silicon bulk micromachining. Micro and Nano Systems Letters, 10(1).

Vitorino, R., Guedes, S., da Costa, J. P., & Kašička, V. (2021). Microfluidics for peptidomics, proteomics, and cell analysis. Nanomaterials, 11(5), 1–33.

Kanioura, A., Constantoudis, V., Petrou, P., Kletsas, D., Tserepi, A., Gogolides, E., Chatzichristidi, M., & Kakabakos, S. (2020). Oxygen plasma micro-nanostructured PMMA plates and microfluidics for increased adhesion and proliferation of cancer versus normal cells: The role of surface roughness and disorder. Micro and Nano Engineering, 8(March), 100060.

Chiang, C. C., Immanuel, P. N., Chiu, Y. H., & Huang, S. J. (2021). Heterogeneous bonding of pmma and double-sided polished silicon wafers through h2o plasma treatment for microfluidic devices. Coatings, 11(5).

Sircar, J. (2021). Surface structure enhanced microchannel flow boiling of low surface tension fluids (Doctoral dissertation, Massachusetts Institute of Technology).

Nazari, M. (2020). On the Physics of Fluid Transport and Phase Change in Nanoconfinements.

Smiljanić, M. M., Lazić, Ž., Rafajilović, M. R., Zobenica, K. C., Milinković, E., & Filipović, A. (2020). Silicon y-bifurcated microchannels etched in 25 wt% tmah water solution. Journal of Micromechanics and Microengineering, 31(1), 017001.

Dong, Z., He, Q., Shen, D., Gong, Z., Zhang, D., Zhang, W., Ono, T., & Jiang, Y. (2023). Microfabrication of functional polyimide films and microstructures for flexible MEMS applications. Microsystems and Nanoengineering, 9(1).

Kwon, K. K., Kim, H., Kim, T., & Chu, C. N. (2020). High aspect ratio channel fabrication with near-infrared laser-induced backside wet etching. Journal of Materials Processing Technology, 278(October), 116505.

Zaki, S., Guan, T., Zhang, N., & Gilchrist, M. D. (2024). Precision shaping of nickel micro-mould features via electropolishing: Characterisation of electrolytes from strong to weak acids. Journal of Manufacturing Processes, 113(January), 261–274.

Capuano, L., Berenschot, J. W., Tiggelaar, R. M., Feinaeugle, M., Tas, N. R., Gardeniers, J. G. E., & Römer, G. R. B. E. (2022). Fabrication of microstructures in the bulk and on the surface of sapphire by anisotropic selective wet etching of laser-affected volumes. Journal of Micromechanics and Microengineering, 32(12).

Hakke, V., Sonawane, S., Anandan, S., Sonawane, S., & Ashokkumar, M. (2021). Process intensification approach using microreactors for synthesizing nanomaterials—a critical review. Nanomaterials, 11(1), 1–21.

Masato, D., Piccolo, L., Lucchetta, G., & Sorgato, M. (2022). Texturing Technologies for Plastics Injection Molding: A Review. Micromachines, 13(8), 1–33.

Zhang, C., Wang, S., Li, J., Zhu, Y., Peng, T., & Yang, H. (2020). Additive manufacturing of products with functional fluid channels: A review. Additive Manufacturing, 36(July), 101490.

Tanveer, M., Ambreen, T., Khan, H., Man Kim, G., & Woo Park, C. (2022). Paper-based microfluidic fuel cells and their applications: A prospective review. Energy Conversion and Management, 264(May), 115732.

Zhu, Z., Tang, X., Chen, C., Peng, F., Yan, R., Zhou, L., Li, Z., & Wu, J. (2022). High precision and efficiency robotic milling of complex parts: Challenges, approaches and trends. Chinese Journal of Aeronautics, 35(2), 22–46.

Afzal, M. J., Tayyaba, S., Ashraf, M. W., Khan, M. I., Javaid, F., Basher, M. K., & Hossain, M. K. (2022). A Review on Microchannel Fabrication Methods and Applications in Large-Scale and Prospective Industries. Evergreen, 9(3), 764–808.

Kumar Bhardwaj, R., & Dutt, A. (2024). Micromachining and its applications for electronics. Micromachining - New Trends and Applications.

Cheng, X., Yao, Y., & Wu, H. (2021). An experimental investigation of flow boiling characteristics in silicon-based groove-wall microchannels with different structural parameters. International Journal of Heat and Mass Transfer, 168, 120843.

Lorenz, S. J., Sadeghi, F., Trivedi, H. K., Rosado, L., Kirsch, M. S., & Wang, C. (2021). A continuum damage mechanics finite element model for investigating effects of surface roughness on rolling contact fatigue. International Journal of Fatigue, 143(September 2020), 105986.

Demir, S., Temiz, A., & Pehlivan, F. (2024). The investigation of printing parameters effect on tensile characteristics for triply periodic minimal surface designs by Taguchi. Polymer Engineering and Science, 64(3), 1209–1221.

Kumar, M. S. K., Gurudatt, B., Reddappa, H. N., & Suresh, R. (2022). Parametric optimization of cutting parameters for micro-machining of titanium Grade-12 alloy using statistical techniques. International Journal of Lightweight Materials and Manufacture, 5(1), 74–83.

Aurich, J. C., Bohley, M., Reichenbach, I. G., & Kirsch, B. (2017). Surface quality in micro milling: Influences of spindle and cutting parameters. CIRP Annals - Manufacturing Technology, 66(1), 101–104.

Yousuff, C. M., Danish, M., Ho, E. T. W., Basha, I. H. K., & Hamid, N. H. B. (2017). Study on the optimum cutting parameters of an aluminum mold for effective bonding strength of a PDMS microfluidic device. Micromachines, 8(8).

Bin Rashid, A., Uddin, A. S. M. N., Azrin, F. A., Saad, K. S. K., & Hoque, M. E. (2023). 3D bioprinting in the era of 4th industrial revolution – insights, advanced applications, and future prospects. Rapid Prototyping Journal, 29(8), 1620–1639.

Jadhav, A., & Jadhav, V. S. (2022). A review on 3D printing: An additive manufacturing technology. Materials Today: Proceedings, 62, 2094–2099.

Regassa Hunde, B., & Debebe Woldeyohannes, A. (2022). Future prospects of computer-aided design (CAD) – A review from the perspective of artificial intelligence (AI), extended reality, and 3D printing. Results in Engineering, 14(May), 100478.

Shirmohammadi, M., Goushchi, S. J., & Keshtiban, P. M. (2021). Optimization of 3D printing process parameters to minimize surface roughness with hybrid artificial neural network model and particle swarm algorithm. Progress in Additive Manufacturing, 6(2), 199–215.

Syrlybayev, D., Zharylkassyn, B., Seisekulova, A., Akhmetov, M., Perveen, A., & Talamona, D. (2021). Optimisation of Strength Properties of FDM Printed Parts — A. Polymers, 13, 1–35.

Kattinger, J., Kornely, M., Ehrler, J., Bonten, C., & Kreutzbruck, M. (2023). Analysis of melting and flow in the hot-end of a material extrusion 3D printer using X-ray computed tomography. Additive Manufacturing, 76(April), 103762.

Singh, G., Missiaen, J. M., Bouvard, D., & Chaix, J. M. (2021). Copper extrusion 3D printing using metal injection moulding feedstock: Analysis of process parameters for green density and surface roughness optimization. Additive Manufacturing, 38.

Guo L., Xu H., & Gong L. (2015). Influence of wall roughness models on fluid flow and heat transfer in microchannels. Applied Thermal Engineering, (84), 399-408.

Guo Y., Zhu C. Y., Gong L., & Zhang Z. B. (2023) Numerical simulation of flow boiling heat transfer in microchannel with surface roughness, International Journal of Heat and Mass Transfer, 20(4), 123830

Ali A.A., Alfarge, D., Lafta, & A.M. (2024). Numerical investigation for the effects of surface roughness in counter flow microchannel heat exchanger with different channels geometries. Discov Appl Sci 6, 459.

Donetti L., Mauro S., Sequenzia G., Calabretta M., & Sitta A. (2024) ‘Effects of the pin-fins cooler roughness on the thermo-fluid dynamics performance of a SiC power module. International Journal of Thermofluids, 22, 100609.

Pandit P, & Samuel G. (2023). Hybrid machining of P20 die steel masters for the development of polymer-based microfluidic devices to study the effect of surface roughness on bacterial activity. Journal of Micromanufacturing, 112-122.

Downloads

Published

2024-12-29

How to Cite

Mohamed Rijal, M. L., Mohamed Yusof , A., Mohamed Noor, R., & Zubair, A. F. (2024). A MINI REVIEW ON THE EFFECTS OF SURFACE ROUGHNESS IN MICROFIUIDICS CHANNELS. Jurnal Mekanikal, 47(2), 28–39. https://doi.org/10.11113/jm.v47.548

Issue

Section

Mechanical

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.