OPTIMIZATION EXPERIMENTAL STUDY OF MACHINING ENERGY CONSUMPTION OF ZIG-ZAG MILLING CUTTING PATH USING RSM.

Authors

  • Azwan Rizal Ghazali Pengajian Kejuruteraan Mekanikal, College of Engineering, Universiti Teknologi MARA Cawangan Pulau Pinang, 13500, Pulau Pinang, Malaysia
  • Abdul Rahman Hemdi Pengajian Kejuruteraan Mekanikal, College of Engineering, Universiti Teknologi MARA Cawangan Pulau Pinang, 13500, Pulau Pinang, Malaysia
  • Kamal Osman Pengajian Kejuruteraan Mekanikal, College of Engineering, Universiti Teknologi MARA Cawangan Pulau Pinang, 13500, Pulau Pinang, Malaysia
  • Ghazirah Mustapha Pengajian Kejuruteraan Mekanikal, College of Engineering, Universiti Teknologi MARA Cawangan Pulau Pinang, 13500, Pulau Pinang, Malaysia
  • Rizal Mohamed Noor Pengajian Kejuruteraan Mekanikal, College of Engineering, Universiti Teknologi MARA Cawangan Pulau Pinang, 13500, Pulau Pinang, Malaysia
  • Ahmad Faiz Zubair Pengajian Kejuruteraan Mekanikal, College of Engineering, Universiti Teknologi MARA Cawangan Pulau Pinang, 13500, Pulau Pinang, Malaysia
  • Muhamad Othman Pengajian Kejuruteraan Mekanikal, College of Engineering, Universiti Teknologi MARA Cawangan Pulau Pinang, 13500, Pulau Pinang, Malaysia
  • Mohamad Irwan Yahaya Pengajian Kejuruteraan Mekanikal, College of Engineering, Universiti Teknologi MARA Cawangan Pulau Pinang, 13500, Pulau Pinang, Malaysia
  • Ana Syahidah Mohd Rodzi Pengajian Kejuruteraan Mekanikal, College of Engineering, Universiti Teknologi MARA Cawangan Pulau Pinang, 13500, Pulau Pinang, Malaysia

DOI:

https://doi.org/10.11113/jm.v46.487

Keywords:

Machining Energy, Milling Machining, Response Surface Methodology

Abstract

Machining operations in CNC milling which remove the work material require power and energy to activate the machine components such as spindle motor, table and tool movement in order to withstand the high friction and load between tool and work material. Energy consumption during cutting operation is greatly influenced by the machining condition and parameters. This experimental research aims to investigate how energy responds to changes in the machining parameters such as depth of cut, spindle speed, and feed rate during face milling operation of CNC machine. The high-speed steel (HSS) tool with a 10mm diameter was used to face mill the 40mm x 40mm of Aluminum 6061. The design of experiment technique using Response Surface Methodology (RSM) is utilized to optimize the experimental work. Power usage and machining time were recorded for each machining process, which is then used to determine the machining energy consumption. The interaction between machining parameter and energy is comprehensively visualized using surface and contour plot. Additionally, the ANOVA analysis investigates the feed rate as the most influential parameter to the machining energy. Finally, the regression equation of machining energy is generated with reliability (R) value of 0.88 which can be used as an energy prediction model.

References

Abdul Hadi, M., Brillinger, M., Wuwer, M., Schmid, J., Trabesinger, S., Jager, M. and Haas, F., 2021. Sustainable Peak Power Smoothing And Energy-Efficient Machining Process Thorough Analysis Of High-Frequency Data, Journal of Cleaner Production, 318: doi.org/10.1016/j.jclepro.128548

Liu, Z. Y., Sealy, M.P., Guo, Y.B. and Liu, Z.Q., 2015. Energy Consumption Characteristics in Finish Hard Milling of Tool Steels, Procedia Manufacturing, 1: 477-486.

Dietmair, A., and Verl, A., 2009. Energy Consumption Forecasting And Optimization For Tool Machines, MM Science Journal, 01: 63–67.

Chu H., Dong, K., Yan, J., Li, Z., Liu, Z., Cheng, Q. and Zhang, C., 2023. Flexible Process Planning Based On Predictive Models For Machining Time And Energy Consumption, International Journal of Advanced Manufacturing Technology, 128:1763-1780.

Moradnazhad, M., and Unver, H. O., 2017. Energy Efficiency Of Machining Operations: A Review, Journal of Engineering Manufacture, 231(1): 1871–1889.

Sakthivelu, S., Anandaraj, T., and Selwin, M., 2017. Multi-Objective Optimization of Machining Conditions on Surface Roughness and MRR during CNC End Milling of Aluminium Alloy 7075 Using Taguchi Design of Experiments, Mechanics and Mechanical Engineering, 21(1): 95-103.

Pavanaskar, S., and McMains, S., 2015. Machine Specific Energy Consumption Analysis For CNC-Milling Toolpaths, Proceedings of the ASME International Design Engineering Technical Conference, USA, 1-10.

Li, C., Chen, X., Tang, Y. and Li, L., 2017. Selection Of Optimum Parameters In Multipass Face Milling For Maximum Energy Efficiency And Minimum Production Cost, Journal of Cleaner Production, 140: 1805–1818.

Luoke,H., Renzhang, T., Wei, C., Yixiong, F. and Xiang, M., 2019. Optimization Of Cutting Parameters For Improving Energy Efficiency In Machining Process, Robotics and Computer-Integrated Manufacturing, 59: 406–416.

Pawanr, S., Garg, G.K. and Routroy, S., 2023. An Integrated Modelling And Optimization Approach For The Selection Of Process Parameters For Variable Power Consumption Machining Processes, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45(9): doi.org/10.1007/s40430-023-04378-5.

Wang, F., Chen, Y., Gao, Y., Liang, Y., Wang, R. and Zhao, D., 2023. Modeling of Specific Energy in the Gear Honing Process, Energie, 16(15): doi.org/10.3390/en16155744.

Minquiz, G.M., Meraz-Melo, M.A., Flores Méndez, J., González-Sierra, N.E., Munoz-Hernandez, G.A., Piñón Reyes, A.C. and Moreno Moreno, M., 2023. Sustainable Assessment Of A Milling Manufacturing Process Based On Economic Tool Life And Energy Modeling, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45 (7): doi.org/10.1007/s40430-023-04189-8

Tian Y., Wang, J., Hu, X., Song, X., Han, J. and Wang, J., 2023. Energy Prediction Models and Distributed Analysis of the Grinding Process of Sustainable Manufacturing, Micromachines, 14(8): doi.org/10.3390/mi14081603.

Cozzolino E. and Astarita A., 2023. Energy Saving In Milling Of Electron Beam–Melted Ti6Al4V Parts: Influence Of Process Parameters, International Journal of Advanced Manufacturing Technology, 127: 179-194.

Zhao, J., Li, L., Lingli, L., Zhang, Y., Lin, J. and Cai, W., 2023. A Multi-Dimension Coupling Model For Energy-Efficiency Of A Machining Process, Energy, 274: doi.org/10.1016/j.energy.2023.127244.

Ahmad, A., Akram, S., Jaffery, S.H.A. and Khan, M.A., 2023. Evaluation Of Specific Cutting Energy, Tool Wear, And Surface Roughness In Dry Turning Of Titanium Grade 3 Alloy, International Journal of Advanced Manufacturing Technology, 127: 1263-1274.

Feng C., Wu, Y., Li, W., Qiu, B., Zhang, J. and Xu, X., 2023. Energy Consumption Optimisation For Machining Processes Based On Numerical Control Programs, Advanced Engineering Informatics, 57: doi.org/10.1016/j.aei.2023.102101.

Pantazis D., Goodall, P., Pease, S.G., Conway, P. and West, A., 2023. Predicting Electrical Power Consumption Of End Milling Using A Virtual Machining Energy Toolkit (V_MET), Computers in Industry, 150: doi.org/10.1016/j.compind.2023.103943.

Pawanr, S., Garg, G.K. and Routroy, S., 2023. Prediction Of Energy Efficiency, Power Factor And Associated Carbon Emissions Of Machine Tools Using Soft Computing Techniques, International Journal on Interactive Design and Manufacturing, 17(3): 1165-1183.

Muthuswamy P., 2023. An Environment-Friendly Sustainable Machining Solution To Reduce Tool Consumption And Machining Time In Face Milling Using A Novel Wiper Insert, Materials Today Sustainability, 22: doi.org/10.1016/j.mtsust.2023.100400.

Pawar, S.S., Bera, T.C. and Sangwan, K.S., 2023. Towards Energy Efficient Milling Of Variable Curved Geometries, Journal Of Manufacturing Processes, 94: 497-511.

Xu, K., and Tang, K., 2016. An Energy Saving Approach For Rough Milling Tool Path Planning, Computer-Aided Design and Applications, 13(2): 253–264.

Hemdi, A. R., Md Ali, U.M., M. Noor, R., Yahaya, M.I., Mahadzir, M.M., Zubair, A.F., Othman, M., Yola, M., Saman, M.Z.M. and Sharif, S., 2020. Cutting Path-Asscosiated Energy Consumption Of Milling Machining Process, IOP Conf. Series: Materials Science and Engineering, 1003: doi.org/10.1088/1757-899X/1003/1/012071.

Rahman, H.A., Fauziah, M.H., Rizal, M.N., Muhamad, O., Mahadzir, M.M., Mohamed, S.O., Zameri, M.S.M. and Safian, S., 2019. Investigation Of Energy Consumption During Milling Operation, AIP Conference Proceeding, 2129 (1): doi.org/10.1063/1.5118017.

Shin, S. J., Woo, J. and Rachuri, S., 2017. Energy Efficiency Of Milling Machining: Component Modeling And Online Optimization Of Cutting Parameters, Journal of Cleaner Production, 161: 12–29.

Mohamed Noor, R., Ramli, I., Zubair, M.F., Hemdi, A.R. and Kataraki, P., 2021. Optimization of Cutting Parameters to Improve Power Consumption and Material Removal Rate in High-Efficiency Milling, Mines Metal and Fuels, 69 (12A): 163-169.

Downloads

Published

2023-11-23

How to Cite

Ghazali, A. R., Hemdi, A. R., Osman, K., Mustapha, G., Mohamed Noor, R., Zubair, A. F., … Mohd Rodzi, A. S. (2023). OPTIMIZATION EXPERIMENTAL STUDY OF MACHINING ENERGY CONSUMPTION OF ZIG-ZAG MILLING CUTTING PATH USING RSM. Jurnal Mekanikal, 46(2), 48–61. https://doi.org/10.11113/jm.v46.487

Issue

Section

Mechanical

Similar Articles

<< < 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.