PARAMETRIC AND NONPARAMETRIC APPROACH OF MAGNETO-RHEOLOGICAL DAMPER MODELLING: A REVIEW
DOI:
https://doi.org/10.11113/jm.v48.558Keywords:
MR Damper Modelling, Nonparametric Approach, Parametric Approach, Smart MaterialAbstract
Magneto-rheological (MR) fluid is a smart material that can quickly alter its rheological characteristic under magnetic field impact and has witnessed a notable surge in attention and developments in recent years. The versatility of this material has allowed it to be used in MR fluid base devices, especially MR dampers, and has sped up its development in various technical applications. The MR damper works in conjunction with a controller to effectively reduce the vibrations by utilizing magnetic forces in both passive and active modes. Monotube, twin-tube, and double-ended MR dampers are the most widely used types of MR dampers, and each of them has a unique characteristic. A thorough and clear understanding of how the MR dampers behave under different conditions is necessary to model the MR damper. Both parametric and nonparametric approaches may be applied in modelling the MR damper. This review intends to discuss the advantages and disadvantages of both parametric and nonparametric approaches through a comprehensive analysis that has been made.
References
Al-Rawashdeh, Y.M., Ferik, S.E., Abido, M.A., 2019. Robust Full-Car Active Suspension System, in: 2019 10th International Conference on Information and Communication Systems (ICICS). Presented at the 2019 10th International Conference on Information and Communication Systems (ICICS), IEEE, Irbid, Jordan, pp. 205–210. https://doi.org/10.1109/IACS.2019.8809167
Abdelkareem, M.A.A., Xu, L., Ali, M.K.A., Elagouz, A., Mi, J., Guo, S., Liu, Y., Zuo, L., 2018. Vibration energy harvesting in automotive suspension system: A detailed review. Applied Energy 229, 672–699. https://doi.org/10.1016/j.apenergy.2018.08.030
Rabbani, Y., Hajinajaf, N., Tavakoli, O., 2019. An experimental study on stability and rheological properties of magnetorheological fluid using iron nanoparticle core–shell structured by cellulose. J Therm Anal Calorim 135, 1687–1697. https://doi.org/10.1007/s10973-018-7538-7
Kumar, J.S., Paul, P.S., Raghunathan, G., Alex, D.G., 2019. A review of challenges and solutions in the preparation and use of magnetorheological fluids. Int J Mech Mater Eng 14, 13. https://doi.org/10.1186/s40712-019-0109-2
Khuntia, S., Yadav, R., Singh, R.C., Rastogi, V., 2020. Design, development and analysis of a magnetorheological damper. IOP Conference Series: Materials Science and Engineering 804, 012009. https://doi.org/10.1088/1757-899X/804/1/012009
Vishwakarma, P.N., Mishra, P., Sharma, S.K., 2022. Characterization of a magnetorheological fluid damper a review. Materials Today: Proceedings, 3rd International Conference on Contemporary Advances in Mechanical Engineering 56, 2988–2994. https://doi.org/10.1016/j.matpr.2021.11.143
Yamin, A.H.M., Talib, M.H.A., Darus, I.Z.M., Nor, N.S.M., 2022. MAGNETO-RHEOLOGICAL (MR) DAMPER – PARAMETRIC MODELLING AND EXPERIMENTAL VALIDATION FOR LORD RD 8040-1. Jurnal Teknologi 84, 27–34. https://doi.org/10.11113/jurnalteknologi.v84.16611
Zhu, X., Jing, X., Cheng, L., 2012. Magnetorheological fluid dampers: A review on structure design and analysis. Journal of Intelligent Material Systems and Structures 23, 839–873. https://doi.org/10.1177/1045389X12436735
Ebrahimi, B., 2009. Development of Hybrid Electromagnetic Dampers for Vehicle Suspension Systems (Doctoral Thesis). University of Waterloo.
Zambare, H., Khoje, A., Patil, S., Razban, A., 2021. MR Damper Modeling Performance Comparison Including Hysteresis and Damper Optimization. IEEE Access 9, 24560–24569. https://doi.org/10.1109/ACCESS.2021.3057174
Pan, W., Yan, Z., Lou, J., and Zhu, S., 2018. Research on MRD Parametric Model Based on Magic Formula. Shock and Vibration, 2018, 1-10. https://doi.org/10.1155/2018/1871846
Wang, D.H., Liao, W.H., 2005. Modeling and control of magnetorheological fluid dampers using neural networks. Smart Mater. Struct. 14, 111–126. https://doi.org/10.1088/0964-1726/14/1/011
Fatah, A.Y.A., Mazlan, S.A., Koga, T., Zamzuri, H., Zeinali, M., Imaduddin, F., 2015. A review of design and modeling of magnetorheological valve. Int. J. Mod. Phys. B 29, 1530004. https://doi.org/10.1142/S0217979215300042
Yu, M., Wang, S., Fu, J., Peng, Y., 2013. Unsteady analysis for oscillatory flow of magnetorheological fluid dampers based on Bingham plastic and Herschel–Bulkley models. Journal of Intelligent Material Systems and Structures 24, 1067–1078. https://doi.org/10.1177/1045389X13476151
Mao, M., Hu, W., Choi, Y.-T., Wereley, N.M., 2007. A Magnetorheological Damper with Bifold Valves for Shock and Vibration Mitigation. Journal of Intelligent Material Systems and Structures 18, 1227–1232. https://doi.org/10.1177/1045389X07083131
Çeşmeci, Ş., Engin, T., 2010. Modeling and testing of a field-controllable magnetorheological fluid damper. International Journal of Mechanical Sciences 52, 1036–1046. https://doi.org/10.1016/j.ijmecsci.2010.04.00
Aziz, M.A., Mohtasim, S.M., Ahammed, R., 2022. State-of-the-art recent developments of large magnetorheological (MR) dampers: a review. Korea-Aust. Rheol. J. 34, 105–136. https://doi.org/10.1007/s13367-022-00021-2
Wereley, N.M., Pang, L., 1998. Nondimensional analysis of semi-active electrorheological and magnetorheological dampers using approximate parallel plate models. Smart Mater. Struct. 7, 732. https://doi.org/10.1088/0964-1726/7/5/015
Braz-César, M., Barros, R., 2014. EXPERIMENTAL AND NUMERICAL ANALYSIS OF MR DAMPERS. https://doi.org/10.7712/120113.4769.C1590
Kwok, N.M., Ha, Q.P., Nguyen, M.T., Li, J., Samali, B., 2007. Bouc–Wen model parameter identification for a MR fluid damper using computationally efficient GA. ISA Transactions 46, 167–179. https://doi.org/10.1016/j.isatra.2006.08.005
Negash, B.A., You, W., Lee, J., Lee, K., 2020. Parameter identification of Bouc-Wen model for Magnetorheological (MR) fluid Damper by a Novel Genetic Algorithm. Advances in Mechanical Engineering 12, 1687814020950546. https://doi.org/10.1177/1687814020950546
Spencer, B., Dyke, S., Sain, M., Carlson, J., 1997. Phenomenological Model of a Magnetorheological Damper. Journal of Engineering Mechanics-asce - J ENG MECH-ASCE 123. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230)
Ismail, M., Ikhouane, F., Rodellar, J., 2009. The Hysteresis Bouc-Wen Model, a Survey. Arch Computat Methods Eng 16, 161–188. https://doi.org/10.1007/s11831-009-9031-8
Aguirre, N., Ikhouane, F., Rodellar, J., Christenson, R., 2012. Parametric identification of the Dahl model for large scale MR dampers. Structural Control and Health Monitoring 19, 332–347. https://doi.org/10.1002/stc.434
Ikhouane, F., Dyke, S.J., 2007. Modeling and identification of a shear mode magnetorheological damper. Smart Mater. Struct. 16, 605–616. https://doi.org/10.1088/0964-1726/16/3/007
Zhu, M., Wei, X., Jia, L., 2014. Building an inverse model of MR damper based on Dahl model, in: 17th International IEEE Conference on Intelligent Transportation Systems (ITSC). Presented at the 2014 IEEE 17th International Conference on Intelligent Transportation Systems (ITSC), IEEE, Qingdao, China, pp. 1148–1153. https://doi.org/10.1109/ITSC.2014.6957842
Khalid, E.M., Ouadi, H., 2015. Backstepping control for semi-active suspension of half-vehicle with Dahl Magnetorheological damper model 3.
Khan, S.A., Suresh, A., SeethaRamaiah, N., 2014. Principles, Characteristics and Applications of Magneto Rheological Fluid Damper in Flow and Shear Mode. Procedia Materials Science, 3rd International Conference on Materials Processing and Characterisation (ICMPC 2014) 6, 1547–1556. https://doi.org/10.1016/j.mspro.2014.07.136
Soltane, S., Montassar, S., Ben Mekki, O., El Fatmi, R., 2015. A hysteretic Bingham model for MR dampers to control cable vibrations. Journal of Mechanics of Materials and Structures 10, 195–206. https://doi.org/10.2140/jomms.2015.10.195
Muthalif, A.G.A., Razali, M.K.M., Nordin, N.H.D., Hamid, S.B.A., 2021. Parametric Estimation From Empirical Data Using Particle Swarm Optimization Method for Different Magnetorheological Damper Models. IEEE Access 9, 72602–72613. https://doi.org/10.1109/ACCESS.2021.3080432
Chen, X., Xu, L., Zhang, S., Zhao, S., Liu, K., 2022. Parameter identification of the Bouc-Wen model for the magnetorheological damper using fireworks algorithm. J Mech Sci Technol 36, 2213–2224. https://doi.org/10.1007/s12206-022-0405-2
Aguirre, N., Ikhouane, F., Rodellar, J., Wagg, D.J., Neild, S.A., n.d. Viscous + Dahl model for MR dampers characterization: A Real time hybrid test (RTHT) validation.
Liu, Q., Chen, W., Hu, H., Zhu, Q., Xie, Z., 2020. An Optimal NARX Neural Network Identification Model for a Magnetorheological Damper With Force-Distortion Behavior. Front. Mater. 7. https://doi.org/10.3389/fmats.2020.00010
Alghafir, M.N., Dunne, J.F., 2012. A NARX damper model for virtual tuning of automotive suspension systems with high-frequency loading. Vehicle System Dynamics 50, 167–197. https://doi.org/10.1080/00423114.2011.575946
Ni, Y.Q., Chen, Z.H., Or, S.W., 2015. Experimental Identification of a Self-Sensing Magnetorheological Damper Using Soft Computing. J. Eng. Mech. 141, 04015001. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000930
Fu, J., Liao, G., Yu, M., Li, P., Lai, J., 2016. NARX neural network modeling and robustness analysis of magnetorheological elastomer isolator. Smart Mater. Struct. 25, 125019. https://doi.org/10.1088/0964-1726/25/12/125019
Karabulut, M.G., Kuecuekoglu, S.F., Dede, M.I.C., 2021. Training and Modelling the Non-Linear Behavior of an MR Brake by Using RNN and LSTM, in: ACTUATOR; International Conference and Exhibition on New Actuator Systems and Applications 2021. Presented at the ACTUATOR; International Conference and Exhibition on New Actuator Systems and Applications 2021, pp. 1–4.
Zhang, H., Wang, L., Shi, W., 2023. Seismic control of adaptive variable stiffness intelligent structures using fuzzy control strategy combined with LSTM. Journal of Building Engineering 78, 107549. https://doi.org/10.1016/j.jobe.2023.107549
Murad, N.A.F., Saufi, M.S.R.M., Yamin, A.H.M., Isham, M.F., Talib, M.H.A., 2024. Magnetorheological Damper Force Prediction using Particle Swarm Optimization and Long Short-Term Memory Model. J. Phys.: Conf. Ser. 2721, 012023. https://doi.org/10.1088/1742-6596/2721/1/012023
Wang, J., Wei, S.L., 2020. Force Tracking Control of MR Damper Using Recurrent Neural Network. 17th World Conference on Earthquake Engineering, 17WCEE, Sendai, Japan
Harun, M.H., Ahmad, F., Yunos, M.R.M., Yamin, A.K.M., 2015. Non-Parametric Modelling and Validation of Magnetorheological Damper for Lateral Suspension of Railway Vehicle Using Interpolated Sixth Order Polynomial. Applied Mechanics and Materials 699, 283–288. https://doi.org/10.4028/www.scientific.net/AMM.699.283
Wang, F., Wang, L., 2021. A simulation model with numerical method and optimal control of magneto‐rheological shock isolator. Optim Control Appl Methods 42, 1651–1671. https://doi.org/10.1002/oca.2752
Teloli, R.D.O., Villani, L.G.G., Silva, S.D., Todd, M.D., 2021. On the use of the GP-NARX model for predicting hysteresis effects of bolted joint structures. Mechanical Systems and Signal Processing 159, 107751. https://doi.org/10.1016/j.ymssp.2021.107751
Metered, H., Bonello, P., Oyadiji, S., 2009. Nonparametric Identification Modeling of Magnetorheological Damper Using Chebyshev Polynomials Fits. SAE Int. J. Passeng. Cars – Mech. Syst. 2, 1125–1135. https://doi.org/10.4271/2009-01-1222
Metered, H., 2012. Application of Nonparametric Magnetorheological Damper Model in Vehicle Semi-active Suspension System. SAE Int. J. Passeng. Cars - Mech. Syst. 5, 715–726. https://doi.org/10.4271/2012-01-0977
Xu, B., Zhao, Y., Deng, B., Du, Y., Wang, C., Ge, H., 2022. Nonparametric nonlinear restoring force and excitation identification with Legendre polynomial model and data fusion. Structural Health Monitoring 21, 264–281. https://doi.org/10.1177/1475921721994740
Downloads
Published
How to Cite
Issue
Section
License
Copyright of articles that appear in Jurnal Mekanikal belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions or any other reproductions of similar nature.















