PARAMETRIC AND NONPARAMETRIC APPROACH OF MAGNETO-RHEOLOGICAL DAMPER MODELLING: A REVIEW

Authors

  • SITI NURUL JANNAH MOHD YATIM Faculty of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
  • MOHD SYAHRIL RAMADHAN MOHD SAUFI Faculty of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
  • MAT HUSSIN AB TALIB Faculty of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
  • MUHAMMAD FIRDAUS ISHAM Faculty of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
  • MUHAMMAD DANIAL ABU HASAN Faculty of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
  • WAN ALIFF ABD SAAD Faculty of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.

DOI:

https://doi.org/10.11113/jm.v48.558

Keywords:

MR Damper Modelling, Nonparametric Approach, Parametric Approach, Smart Material

Abstract

Magneto-rheological (MR) fluid is a smart material that can quickly alter its rheological characteristic under magnetic field impact and has witnessed a notable surge in attention and developments in recent years. The versatility of this material has allowed it to be used in MR fluid base devices, especially MR dampers, and has sped up its development in various technical applications. The MR damper works in conjunction with a controller to effectively reduce the vibrations by utilizing magnetic forces in both passive and active modes. Monotube, twin-tube, and double-ended MR dampers are the most widely used types of MR dampers, and each of them has a unique characteristic. A thorough and clear understanding of how the MR dampers behave under different conditions is necessary to model the MR damper. Both parametric and nonparametric approaches may be applied in modelling the MR damper. This review intends to discuss the advantages and disadvantages of both parametric and nonparametric approaches through a comprehensive analysis that has been made.

References

Al-Rawashdeh, Y.M., Ferik, S.E., Abido, M.A., 2019. Robust Full-Car Active Suspension System, in: 2019 10th International Conference on Information and Communication Systems (ICICS). Presented at the 2019 10th International Conference on Information and Communication Systems (ICICS), IEEE, Irbid, Jordan, pp. 205–210. https://doi.org/10.1109/IACS.2019.8809167

Abdelkareem, M.A.A., Xu, L., Ali, M.K.A., Elagouz, A., Mi, J., Guo, S., Liu, Y., Zuo, L., 2018. Vibration energy harvesting in automotive suspension system: A detailed review. Applied Energy 229, 672–699. https://doi.org/10.1016/j.apenergy.2018.08.030

Rabbani, Y., Hajinajaf, N., Tavakoli, O., 2019. An experimental study on stability and rheological properties of magnetorheological fluid using iron nanoparticle core–shell structured by cellulose. J Therm Anal Calorim 135, 1687–1697. https://doi.org/10.1007/s10973-018-7538-7

Kumar, J.S., Paul, P.S., Raghunathan, G., Alex, D.G., 2019. A review of challenges and solutions in the preparation and use of magnetorheological fluids. Int J Mech Mater Eng 14, 13. https://doi.org/10.1186/s40712-019-0109-2

Khuntia, S., Yadav, R., Singh, R.C., Rastogi, V., 2020. Design, development and analysis of a magnetorheological damper. IOP Conference Series: Materials Science and Engineering 804, 012009. https://doi.org/10.1088/1757-899X/804/1/012009

Vishwakarma, P.N., Mishra, P., Sharma, S.K., 2022. Characterization of a magnetorheological fluid damper a review. Materials Today: Proceedings, 3rd International Conference on Contemporary Advances in Mechanical Engineering 56, 2988–2994. https://doi.org/10.1016/j.matpr.2021.11.143

Yamin, A.H.M., Talib, M.H.A., Darus, I.Z.M., Nor, N.S.M., 2022. MAGNETO-RHEOLOGICAL (MR) DAMPER – PARAMETRIC MODELLING AND EXPERIMENTAL VALIDATION FOR LORD RD 8040-1. Jurnal Teknologi 84, 27–34. https://doi.org/10.11113/jurnalteknologi.v84.16611

Zhu, X., Jing, X., Cheng, L., 2012. Magnetorheological fluid dampers: A review on structure design and analysis. Journal of Intelligent Material Systems and Structures 23, 839–873. https://doi.org/10.1177/1045389X12436735

Ebrahimi, B., 2009. Development of Hybrid Electromagnetic Dampers for Vehicle Suspension Systems (Doctoral Thesis). University of Waterloo.

Zambare, H., Khoje, A., Patil, S., Razban, A., 2021. MR Damper Modeling Performance Comparison Including Hysteresis and Damper Optimization. IEEE Access 9, 24560–24569. https://doi.org/10.1109/ACCESS.2021.3057174

Pan, W., Yan, Z., Lou, J., and Zhu, S., 2018. Research on MRD Parametric Model Based on Magic Formula. Shock and Vibration, 2018, 1-10. https://doi.org/10.1155/2018/1871846

Wang, D.H., Liao, W.H., 2005. Modeling and control of magnetorheological fluid dampers using neural networks. Smart Mater. Struct. 14, 111–126. https://doi.org/10.1088/0964-1726/14/1/011

Fatah, A.Y.A., Mazlan, S.A., Koga, T., Zamzuri, H., Zeinali, M., Imaduddin, F., 2015. A review of design and modeling of magnetorheological valve. Int. J. Mod. Phys. B 29, 1530004. https://doi.org/10.1142/S0217979215300042

Yu, M., Wang, S., Fu, J., Peng, Y., 2013. Unsteady analysis for oscillatory flow of magnetorheological fluid dampers based on Bingham plastic and Herschel–Bulkley models. Journal of Intelligent Material Systems and Structures 24, 1067–1078. https://doi.org/10.1177/1045389X13476151

Mao, M., Hu, W., Choi, Y.-T., Wereley, N.M., 2007. A Magnetorheological Damper with Bifold Valves for Shock and Vibration Mitigation. Journal of Intelligent Material Systems and Structures 18, 1227–1232. https://doi.org/10.1177/1045389X07083131

Çeşmeci, Ş., Engin, T., 2010. Modeling and testing of a field-controllable magnetorheological fluid damper. International Journal of Mechanical Sciences 52, 1036–1046. https://doi.org/10.1016/j.ijmecsci.2010.04.00

Aziz, M.A., Mohtasim, S.M., Ahammed, R., 2022. State-of-the-art recent developments of large magnetorheological (MR) dampers: a review. Korea-Aust. Rheol. J. 34, 105–136. https://doi.org/10.1007/s13367-022-00021-2

Wereley, N.M., Pang, L., 1998. Nondimensional analysis of semi-active electrorheological and magnetorheological dampers using approximate parallel plate models. Smart Mater. Struct. 7, 732. https://doi.org/10.1088/0964-1726/7/5/015

Braz-César, M., Barros, R., 2014. EXPERIMENTAL AND NUMERICAL ANALYSIS OF MR DAMPERS. https://doi.org/10.7712/120113.4769.C1590

Kwok, N.M., Ha, Q.P., Nguyen, M.T., Li, J., Samali, B., 2007. Bouc–Wen model parameter identification for a MR fluid damper using computationally efficient GA. ISA Transactions 46, 167–179. https://doi.org/10.1016/j.isatra.2006.08.005

Negash, B.A., You, W., Lee, J., Lee, K., 2020. Parameter identification of Bouc-Wen model for Magnetorheological (MR) fluid Damper by a Novel Genetic Algorithm. Advances in Mechanical Engineering 12, 1687814020950546. https://doi.org/10.1177/1687814020950546

Spencer, B., Dyke, S., Sain, M., Carlson, J., 1997. Phenomenological Model of a Magnetorheological Damper. Journal of Engineering Mechanics-asce - J ENG MECH-ASCE 123. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230)

Ismail, M., Ikhouane, F., Rodellar, J., 2009. The Hysteresis Bouc-Wen Model, a Survey. Arch Computat Methods Eng 16, 161–188. https://doi.org/10.1007/s11831-009-9031-8

Aguirre, N., Ikhouane, F., Rodellar, J., Christenson, R., 2012. Parametric identification of the Dahl model for large scale MR dampers. Structural Control and Health Monitoring 19, 332–347. https://doi.org/10.1002/stc.434

Ikhouane, F., Dyke, S.J., 2007. Modeling and identification of a shear mode magnetorheological damper. Smart Mater. Struct. 16, 605–616. https://doi.org/10.1088/0964-1726/16/3/007

Zhu, M., Wei, X., Jia, L., 2014. Building an inverse model of MR damper based on Dahl model, in: 17th International IEEE Conference on Intelligent Transportation Systems (ITSC). Presented at the 2014 IEEE 17th International Conference on Intelligent Transportation Systems (ITSC), IEEE, Qingdao, China, pp. 1148–1153. https://doi.org/10.1109/ITSC.2014.6957842

Khalid, E.M., Ouadi, H., 2015. Backstepping control for semi-active suspension of half-vehicle with Dahl Magnetorheological damper model 3.

Khan, S.A., Suresh, A., SeethaRamaiah, N., 2014. Principles, Characteristics and Applications of Magneto Rheological Fluid Damper in Flow and Shear Mode. Procedia Materials Science, 3rd International Conference on Materials Processing and Characterisation (ICMPC 2014) 6, 1547–1556. https://doi.org/10.1016/j.mspro.2014.07.136

Soltane, S., Montassar, S., Ben Mekki, O., El Fatmi, R., 2015. A hysteretic Bingham model for MR dampers to control cable vibrations. Journal of Mechanics of Materials and Structures 10, 195–206. https://doi.org/10.2140/jomms.2015.10.195

Muthalif, A.G.A., Razali, M.K.M., Nordin, N.H.D., Hamid, S.B.A., 2021. Parametric Estimation From Empirical Data Using Particle Swarm Optimization Method for Different Magnetorheological Damper Models. IEEE Access 9, 72602–72613. https://doi.org/10.1109/ACCESS.2021.3080432

Chen, X., Xu, L., Zhang, S., Zhao, S., Liu, K., 2022. Parameter identification of the Bouc-Wen model for the magnetorheological damper using fireworks algorithm. J Mech Sci Technol 36, 2213–2224. https://doi.org/10.1007/s12206-022-0405-2

Aguirre, N., Ikhouane, F., Rodellar, J., Wagg, D.J., Neild, S.A., n.d. Viscous + Dahl model for MR dampers characterization: A Real time hybrid test (RTHT) validation.

Liu, Q., Chen, W., Hu, H., Zhu, Q., Xie, Z., 2020. An Optimal NARX Neural Network Identification Model for a Magnetorheological Damper With Force-Distortion Behavior. Front. Mater. 7. https://doi.org/10.3389/fmats.2020.00010

Alghafir, M.N., Dunne, J.F., 2012. A NARX damper model for virtual tuning of automotive suspension systems with high-frequency loading. Vehicle System Dynamics 50, 167–197. https://doi.org/10.1080/00423114.2011.575946

Ni, Y.Q., Chen, Z.H., Or, S.W., 2015. Experimental Identification of a Self-Sensing Magnetorheological Damper Using Soft Computing. J. Eng. Mech. 141, 04015001. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000930

Fu, J., Liao, G., Yu, M., Li, P., Lai, J., 2016. NARX neural network modeling and robustness analysis of magnetorheological elastomer isolator. Smart Mater. Struct. 25, 125019. https://doi.org/10.1088/0964-1726/25/12/125019

Karabulut, M.G., Kuecuekoglu, S.F., Dede, M.I.C., 2021. Training and Modelling the Non-Linear Behavior of an MR Brake by Using RNN and LSTM, in: ACTUATOR; International Conference and Exhibition on New Actuator Systems and Applications 2021. Presented at the ACTUATOR; International Conference and Exhibition on New Actuator Systems and Applications 2021, pp. 1–4.

Zhang, H., Wang, L., Shi, W., 2023. Seismic control of adaptive variable stiffness intelligent structures using fuzzy control strategy combined with LSTM. Journal of Building Engineering 78, 107549. https://doi.org/10.1016/j.jobe.2023.107549

Murad, N.A.F., Saufi, M.S.R.M., Yamin, A.H.M., Isham, M.F., Talib, M.H.A., 2024. Magnetorheological Damper Force Prediction using Particle Swarm Optimization and Long Short-Term Memory Model. J. Phys.: Conf. Ser. 2721, 012023. https://doi.org/10.1088/1742-6596/2721/1/012023

Wang, J., Wei, S.L., 2020. Force Tracking Control of MR Damper Using Recurrent Neural Network. 17th World Conference on Earthquake Engineering, 17WCEE, Sendai, Japan

Harun, M.H., Ahmad, F., Yunos, M.R.M., Yamin, A.K.M., 2015. Non-Parametric Modelling and Validation of Magnetorheological Damper for Lateral Suspension of Railway Vehicle Using Interpolated Sixth Order Polynomial. Applied Mechanics and Materials 699, 283–288. https://doi.org/10.4028/www.scientific.net/AMM.699.283

Wang, F., Wang, L., 2021. A simulation model with numerical method and optimal control of magneto‐rheological shock isolator. Optim Control Appl Methods 42, 1651–1671. https://doi.org/10.1002/oca.2752

Teloli, R.D.O., Villani, L.G.G., Silva, S.D., Todd, M.D., 2021. On the use of the GP-NARX model for predicting hysteresis effects of bolted joint structures. Mechanical Systems and Signal Processing 159, 107751. https://doi.org/10.1016/j.ymssp.2021.107751

Metered, H., Bonello, P., Oyadiji, S., 2009. Nonparametric Identification Modeling of Magnetorheological Damper Using Chebyshev Polynomials Fits. SAE Int. J. Passeng. Cars – Mech. Syst. 2, 1125–1135. https://doi.org/10.4271/2009-01-1222

Metered, H., 2012. Application of Nonparametric Magnetorheological Damper Model in Vehicle Semi-active Suspension System. SAE Int. J. Passeng. Cars - Mech. Syst. 5, 715–726. https://doi.org/10.4271/2012-01-0977

Xu, B., Zhao, Y., Deng, B., Du, Y., Wang, C., Ge, H., 2022. Nonparametric nonlinear restoring force and excitation identification with Legendre polynomial model and data fusion. Structural Health Monitoring 21, 264–281. https://doi.org/10.1177/1475921721994740

Downloads

Published

2025-11-17

How to Cite

MOHD YATIM, S. N. J., MOHD SAUFI, M. S. R., AB TALIB, M. H., ISHAM, M. F., ABU HASAN, M. D., & ABD SAAD, W. A. (2025). PARAMETRIC AND NONPARAMETRIC APPROACH OF MAGNETO-RHEOLOGICAL DAMPER MODELLING: A REVIEW. Jurnal Mekanikal, 48(2), 18–35. https://doi.org/10.11113/jm.v48.558

Issue

Section

Mechanical

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.