THE EFFECT OF PHYSIOLOGICAL LOAD CONFIGURATION ON INTERFACE MICROMOTION IN CEMENTLESS FEMORAL STEMS

Authors

  • Mohammed Rafiq Abdul Kadir Biomechanics & Tissue Engineering Group (Bio-TEG). Faculty of Mechanical Engineering, Univcrsiti Teknologi Malaysia, 81310 Johor Bahru, Johor
  • Ulrich N. Hanserr Biomechanics Laboratory, Department of Mechanical Engineering, Imperial College London.

Keywords:

Hip arthroplasty, cementless stem, fi nite element, muscle loadings primary stability, interface micromotion

Abstract

The most commonly reported failure modes ofcementless hip stems are loosening
and thigh pain: both are attributed to the relative motion at the bone-implant
interf ace due to fail ure to achie ve sufficient primary fixation. Accurate predictions
of hip stems ' stability are therefore crucial to tire pre-clinical analyses of hip
arthroplasty. This study uses fin ite element technique to analyse the effect of
muscle fo rces a ll the predicted micromotion and therefore stability of cementless
f emoral components. An in-house experimentally validated micromotion algorithm
was used in analyses simulating hl'O of the most common physiological activitieswalking
and stair-climbing. The results showed that models where mus cle loads
were included had ten times larger micromotion than those model/ed without
muscle loads. Ignoring muscle forces in any pre-clinical evaluation offe moral
stems are theref ore not advisable as it will overestimate the stability of the stem.

References

Clohisy, J.C. and Harris, W.H., 1999. The Harri s-Galante uncemented femoral component in primary tota l hip replacement at 10 years, The Journal of Arthroplasty, 14(8), 915-917.

Dickob, M. and Martin i, T., 1996. The cementless PM hip arthroplasty-Pourto- seven-year results, Journal ofBone and Joint Surgery-British Volume, 78B (2),1 95-199.

Duparc, J. and Massin, P., 1992. Results of 203 total hip replacements using a smooth, cementless femoral component, Journal of Bone and Joint Surgery British Volume, 74(2), 251-256.

Adam, F., Hammer, D.S., Pfautsch, S. and Westermann, K., 2002. Early failure of a press-fit carbon fiber hip prosthesis with a smooth surface, Journal of Arth roplasty, 17(2),2 17·223.

Chen, C.1l., Shih, c.n., Lin, C.C. and Cheng , C,K., 1998. Cementless roycamille femora l component, Archives of Orthopaedic and Trauma Surgery, 118(1-2). 85-88.

Petcrsilgc, W.J., Dlima, D.D., Walker, R.H. and Colwell, C.W., 1997. Prospective study of 100 consecutive Harr is-Galante porous total hip arthroplast ies - 4- 10 8-year follow-up study, Journal of Arthroplasty, 12(2), 185-193.

Haddad, RJ., Cook, S.D. and Brinker, M.R., 1990. A comparison of 3 varieties of noncemented porous-coated hip-rep lacement, Journal ofBone and Joint Surgery-British Volume, 72( 1), 2-8.

Jacobsson, S.A., Djerf, K , Gillqu ist, J., Hammerby, S. and Ivarsson, I., 1993. A prospective comparison of butel and PCA hip-arthrop lasty, Journal of Bone and Joint Surgery-British Volume, 75(4), 624-62 9.

Karrholm, J., Anderberg, c., Snorrason, F., Thanner, J., Langeland, N., Malchau, H. and Herberts, P., 2002. Eva luation of a femoral stem with reduced stiffness -a randomized study with use of radiostcreomctry and bone deni stometry, Journal ofBone and Joint Surgery-American Volume , 84A(9),

-1 658.

Bachus, K.N., Bloebaum, R.D. and Jones, R.E., 1999. Compara tive micromotion of fully and proximally cemented femoral stems, Clinical Orthopaedics and Related Research 366, 248-257.

Berzins, A., Sumner, D.R., Andri acchi. T.P. and Galante, J.D., 1993. Stem curvature and load angle influence the initial relati ve bone-implant motion of ccmcnrless femora l stems, Journal of Orthopaedic Research, 11(5). 758-769.

Otani, T., Whiteside. LA, White. S.E. and Mccarthy, D.S., 1993. Effects of femoral component material properties on cemen tless fixation in total hip arthroplasty,Journal of Arth roplasty , 8(1) , 67-74.

Schne ider, E., Eulenberger, J., Steiner. W., w yder, D., Friedman, R.J. and Perren , S.M., 1989. Experimental-method for the invitro test ing of the initial stability of cementlcss hip prostheses, Journal ofBiomechanics. 22(6-7), 735744.

Whiteside, L.A. , Amador, D. anti Russell, K., 1988. The effects of the collar on total hip femoral component subsidence, Clinical Orthopaedics and Related Research 231, 120-126.

Whiteside, L.A., White. S.F_. Engh, C.A. and Hea d. W., 1993. Mechan ical evaluation of cadaver retr ieval specimens of cementless bone-ingrown total hip arthroplasty femora l components, Journal of Arthroplasty, 8(2), 147-155.

Burke, D.W., Oconnor, D.O., Za lenski, E.B., Jasty, M. and Harri s, W.II ., 199 1. Micromotion of cemented and uneemented femoral components. JournalofBone and Joint Surgery-British Volume. 73(1). 33-37.

Bngh, C.A., Oconnor , D., Jasty, M., Mcgovern, T.F., Bobyn, J.D. and Harris. w.n., 1992. Quanti ficat ion of implant micromotion , strain shielding and bone-resorption with porous-coated anatomic medullary locking femoral prostheses. Clinical Orthopaedics and Related Research 285, 13·29.

Duda, G., 1996. Influ ence ofmuscle f orces on the internal loads in the f emur during gait, Ph.D. thesis. Technische Univcrsitat Hamburg.

Dude, G.N., Heller. ~ ., Albinger, J.• Schulz, 0 .• Schneider, E. and Claes, L.. 1998. Influence of musc le forces on femoral strain distr ibution, J ournal of Biomechanics. 3 1(9 ), 841-846.

Kuipe r, J.R. and Huiskes , R.. 1996. Friction and stem stiffness affect dynamic interface in total hip replacement, Journal of Orthopa edic Research, 14( I ), 36-43.

Kerner. J., Huiskcs, R., van Lenthe, G.H., Wein ans, H., van Rietbergen, 8., Engh, C.A. and Amis, A.A., 1999. Correlation between pre-operative periprosthetic bone density and post-operative bone loss in TIIA can be

explained by strain-adaptive remodelling. Journal of Biomechanics. 32(7 ). 695-703 .

Andc, M., Imura, S., Omori, H., Okumura, Y., Bo. A. and Saba. H., 1999 . Nonlinear three-dimensional finite element ana lysis of newly designed cemenuess total hip stems, Artificial Organs , 23(4). 339- 346 .

Biegler, F.B. , Reuben, J .D., Harrigan. T.P., Hou, F. J. and Akin. J.E., 1995. Effect of porous coating and loading conditions on total hip femoral stem stability, Jou rnal of Arthroplasty, 10(6), 839-847.

, Keaveny, T.M. and Bartel, D.L, 1993. Effects of porous coating, with and without collar support, on early relative motion for a cement less hipprosthes is. Journal ofBiomechanics, 26(12 ), 1355-1368.

Rubin, P.J., Rakolomanana, R.L, Leyvraz, P.F., Zysset, P.K., Cumier, A. and Heegaard, J.H., 1993. Frictional interface micromotions and anisotropic stress distribution in a femoral total hip component, Jo urnal of Biomechanics , 26(6), 725-739.

viceconti, M., Monti, L., Muccini, R , Bemakiewicz, M. and Toni, A., 200 1. Even a thin layer of soft tissue may compromise the primary stability of cementless hip stems, Clinical Biomechanics, 16(9) , 765-775 .

vicecomi, M., Muccini, R., Bcrnakiewicz, M., Baleani , M. and Cristofolini, L., 2000. Large-sliding contact elements accurately predict levels of boneimplant micromotio n re levant to osscointcgration, Journal of Biomechanics, 33(12), 1611-16 18.

Kendr ick, J.8. , Noble, P.C. and Tull os,n.S., 1995. Distal stern design and the torsional stability of cementlc ss femora l stems, Jo urna l ofArthroplasty , 10(4), 463 -469.

Carter, D. and Il ayes, W., 1997. The compressive beh aviour of bone as a twophase porous structure, Journal ofBone and Join t Surgery, 59(7), 954-962 .

Fisher, l.A. , 2000. A marhematical investigation of the influence of skeletal geometry on the mechanics of a prosth etic human hip j oint, PhD Thesis, Imperial College London.

Bran d, R., Pederson, D. and Friederich, J., 1986. The sensitivity of muscle force predictions to changes in physiologi c cross-sec tiona l area, Journal of Biomechanics, 19(8), 589-596.

Brand, R., Pederson, D., Davy, D., Kotzar, G., Heiple, K. and Goldberg, V., 1994. Comparison of hip force calculations and measurements in the same patient. Journal of Arthroplasty, 9( 1), 45-51 .

Maloney, W.J., Jesty, M., Burke, D.W., Oconnor, D.O., Zalenski, E.B., Bragdon, C. and Harri s, w.n., 1989. Bicmechanical and histologic investigation of cemented total hip arthroplasties-a study of autopsy-retrieved femur s afte r invivc cycl ing, Clinical Orthopaedics and Rela ted Research 249, 129- 140.

Szmukler-Moncler, S., Salama, H., Reingewirt z, Y. and Dubruill e, U I., 1998. Timing of loading and effect of micromotion on bone-dental implant interface : Review of experimental literature, Journal of Biomedical Materials Research,43(2), 192-203.

Dhert , W.J.A. and Jansen, lA, 2000. The validity ofa single pushout lest, in Mechanical tes ting ofbone and the bone-implant interface, lst edn , Y.II. An and R.A. Draughn, eds., CRC Press.

Kim, Y.II . and Kim, V.E.M., 1994. Cementless poro us-coated anatomic medullary locking total hip prostheses, The Journal of Arthroplasty, 9(3), 243252.

Pancant i, A., Bemakiewicz, M. and Viceconti, M., 2003 . The primary stability of a cementless stem vari es between subjects as much as between activ ities , Journal ofBiomechan ics, 36(6), 777·7 85.

Kotzar, G.M., Davy, D.T., Bcrilla, J. and Goldberg, V.M., 1995. Torsional loads in the early postopera tive period following total hip replacement, Journal of Orthopaedic Research, 13(6), 945-955.

Ang, x.c., De, S.D., Goh, J.C.R, Low, S.L. and Bose, K., 1997.

Periprosthetic bone remodelling afte r cementless total hip replacement-a prospective comparison of two different implant designs, Journal of Bone and Joint Surgery-British Volume , 79B(4), 675-679.

Badhe, N.P., Quinnell, R C. and Howard, P.W., 2002. The uncemented BiContact total hip arthroplasty, The Journal of Arthroplasty, 17, 7, 896-901 .

Callaghan, J.J., Fulghum, C.S., Glisson, RR and Stranne, S.K.., 1992. The effect of femoral stem geometry on interface motion in uncemented porouscoated total hip prostheses - comparison of straight-stem and curved-stem designs, Journal of Bone and Joint Surgery-American Volume, 74A(6), 839848.

Whiteside, L.A. , t 989. The effect of stem fit on bone hypertrophy and pain relief in cementless total hip-arthrop lasty, Clinical Orthopaedics and Related Research 247, 138-147.

Chess, D.G., Grainger, RW., Phillips, T., Zarzour, Z.D. and Pard, B.R. , 1996. The cementless anatomic medullary locking femoral component: An independent clinical and radiographic assessment, Canadian Journal of Surgery , 39(5), 389-392.

Engh, C.A., Hooten. J.P., Zettlschaffer, K.F., Ghaffarpour, M., Mcgovern, T.F., Macalino, G.E. and Zicat, B.A. , 1994. Porous-coated total hipreplacement, Clinical Orthopaedics and Related Research 298, 89-96.

Johnston , D.W.C., Davies, D.M., Beaupre, L.A. and Lavoie, G., 2001. Standard anatomical medullary locking (AML) versus tricalcium phosphatecoated AML femoral prostheses, Canadian Journal of Surgery, 44(6), 421427.

Pilliar, R.M., Lee, J.M. and Maniatopoulos, C., 1986. Observations on the effect of movement on bone ingrowth into porous-surfaced implants, Clinical Orthopaedics and Related Research 208, 108-113 .

Sumner, D.R, Turner, T.M., Urban, R.M. and Galante, J.O., 1991. Bone ingrowth into porous coati ngs attached to prosthesis of differing stiffness, in The Bone Biomaterial In terf ace , University of Toronto Press.

Morscher, E.W. and Dick, W., 1983. Cementless fixation of isoelastic hip endoprostheses manufactured from plastic materials, Clinical Orthopedics and Related Research, 176, 77-87.

Adam, F., Hammer, D.S., Pfautsch, S. and Westerman, K., 2002 . Early failure of a press-fit carbon fiber hip prosthesis with a smooth surface, Journal of Arth roplasty, 17(2), 217-223.

Downloads

Published

2018-04-17

How to Cite

Abdul Kadir, M. R., & Hanserr, U. N. (2018). THE EFFECT OF PHYSIOLOGICAL LOAD CONFIGURATION ON INTERFACE MICROMOTION IN CEMENTLESS FEMORAL STEMS. Jurnal Mekanikal, 23(1). Retrieved from https://jurnalmekanikal.utm.my/index.php/jurnalmekanikal/article/view/168

Issue

Section

Mechanical

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.