Multifaceted Analysis of Aluminum–Coal Ash–Pumice Composites for Enhanced Brake Disc Specific Heat Capacity
DOI:
https://doi.org/10.11113/jm.v48.509Keywords:
Aluminum-Pumice-Coal Ash Hybrid composite; Specific Heat Capacity; Characterization; Taguchi Optimization.Abstract
The present study investigated the optimization and modelling of some specific process parameters of double stir casting of aluminum, pumice, coal ash (Al-BP-CA) hybrid composites to improve its specific heat capacity for automobile brake disc applications. The constituents were analyzed using X-ray fluorescence (XRF), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The Taguchi approach was utilized to design the experimental runs and optimize the weight composition of reinforcements and stir-casting process parameters. The regression analysis was utilized in developing the mathematical model to forecast the specific heat capacity of the composites. The characterization results revealed that brown pumice and coal ash contained hard and stiff minerals such as SiO2, Fe2O3, and Al2O3, making them well-suited as reinforcement in metal matrixes such as aluminum, titanium, and magnesium. According to the thermogravimetric and differential thermal analyses, the aluminum alloy, brown pumice, and coal ash can endure temperatures up to 264.08, 724 °C, and 606.61°C before any deterioration. The optimal specific heat capacities achieved were 824.85 J/kgK (experimental) and 820.48 J/kgK (predicted) by utilizing 7.5 vol% of brown pumice, 5 vol% of coal ash, 400 rpm stirrer speed, 850 °C pouring temperature, and 20 minutes stirring duration. The developed mathematical model shows an excellent level prediction for the specific heat capacity of the composites based on the process parameters and ceramics reinforcement, with R-Square and adjusted R-Square, and predicted R-Square values of 99.27%, 97.25%, and 88.12%, respectively.
References
Ibrahim, T. K., Yawas, D. S., Dan-asabe, B., & Adebisi, A. A. (2023). Manufacturing and optimization of the effect of casting process parameters on the compressive strength of aluminum/pumice/carbonated coal hybrid composites: Taguchi and regression analysis approach. International Journal of Advance Manufacturing, 125, 3401–3414. https://doi.org/10.1007/s00170-023-10923-2
Nong, X., Jiang, Y., Fang, M., Yu, L., & Liu, C. (2017). Numerical analysis of novel SiC3D/Al alloy co-continuous composites ventilated brake disc. International Journal of Heat and Mass Transfer, 108, 1374–1382. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.108
Adediran, A. A., Alaneme, K. K., Oladele, I. O., Akinlabi, E. T., & Sánchez, J. (2021). Microstructural characteristics and mechanical behavior of aluminum matrix composites reinforced with Si-based refractory compounds derived from rice husk. Cogent Engineering, 8(1). https://doi.org/10.1080/23311916.2021.1897928
Ashok-Kumar, R., & Devaraju, A. (2021). Modeling of mechanical properties and high temperature wear behavior of Al7075/SiC/CRS composite using RSM. Silicon, 13, 3499–3519. https://doi.org/10.1007/s12633-020-00801-x
Chandel, R., Sharma, N., & Bansal, S. A. (2021). A review on recent developments of aluminum-based hybrid composites for automotive applications. Emergent Materials, 4(5), 1243–1257.
Adebisi, A. A., & Ndaliman, M. B. (2015). Mathematical modelling of stir casting process parameters for AlSicp composite using central composite design. 28th AGM and International Conference of the Nigerian Institution for Mechanical Engineers (pp. 1–10). The Nigerian Institution for Mechanical Engineers.
Arunkumar, T., Sreevatsa, K. A., Krishnan, D. R., & Subbiah, R. (2020). Corrosion behaviour of aluminium 6061/MWCNT composite prepared by double stir casting method. International Conference on Advances in Materials Processing & Manufacturing Applications (pp. 293–299). Springer.
Vinod, B., Ramanathan, S., Ananthi, V., & Selvakumar, N. (2019). Fabrication and characterisation of organic and in-organic reinforced A356 aluminium matrix hybrid composite by improved double-stir casting. Silicon, 11(2), 817–829.
Ochuokpa, E. O., Yawas, D. S., Okorie, P. U., & Sumaila, M. (2021). Evaluation of mechanical and metallurgical properties Al-Si-Mg/Mangiferaindica seed shell ash (MSSA) particulate composite for production of motorcycle hub. Journal of Science Technology and Education, 9(1), 221–238.
Kumar, A., Rana, R. S., & Purohit, R. (2020). Effect of stirrer design on microstructure of MWCNT and Al alloy by stir casting process. Advances in Materials and Processing Technologies, 6(2), 320–327.
Alabi, A. A., Samuel, B. O., Peter, M. E., & Tahir, S. M. (2022). Optimization and modelling of the fracture inhibition potential of heat treated doum palm nut fibres in phenolic resin matrix polymer composite: A Taguchi approach. Functional Composites and Structures, 4(1), 015004.
Ibrahim, T. K., Yawas, D. S., Dan-asabe, B., & Adebisi, A. A. (2023). Optimization and statistical modeling of the thermal conductivity of a pumice powder and carbonated coal particle hybrid reinforced aluminum metal matrix composite for brake disc application: A Taguchi approach. Functional Composite and Structure, 5(1), 015008. https://doi.org/10.1088/2631-6331/acc0d1
Ibrahim, T. K., Yawas, D. S., Dan-asabe, B., & Adebisi, A. A. (2023). Taguchi optimization and modelling of stir casting process parameters on the percentage elongation of aluminium, pumice and carbonated coal composite. Scientific Reports, 13, 2915. https://doi.org/10.1038/s41598-023-29839-8
Zhou, H., Bhattarai, R., Li, Y., Si, B., Dong, X., Wang, T., & Yao, Z. (2022). Towards sustainable coal industry: Turning coal bottom ash into wealth. Science of The Total Environment, 804, 149985.
Kumar, M. A., Seetharamu, S., Nayak, J., & Satapathy, L. (2014). A study on thermal behavior of aluminum cenosphere powder metallurgy composites sintered in microwave. Procedia Materials Science, 5, 1066–1074. https://doi.org/10.1016/j.mspro.2014.07.398
Jayakrishnan, P., & Ramesan, M. T. (2016). Synthesis, characterisation and properties of poly (vinyl alcohol)/chemically modified and unmodified pumice composites. Journal of Chemical and Pharmaceutical Sciences, 974, 2115.
Hassan, M., & Gomes, V. G. (2018). Coal derived carbon nanomaterials–Recent advances in synthesis and applications. Applied Materials Today, 12, 342–358.
Sharma, A., Sakimoto, N., & Takanohashi, T. (2018). Effect of binder amount on the development of coal-binder interface and its relationship with the strength of the carbonised coal-binder composite. Carbon Resources Conversion, 1(2), 139–146.
Kumar, R., & Kumar, V. (2017). Optimization of process parameter for Stir Casted AA6063 Metal Matrix Composite on Hardness, Tensile Strength and Impact Energy. International Journal of Mechanical Engineering and Technology, 8(12), 108–117.
Patil, G., & Patil, M. H. (2020). Optimization of stir cast process parameters for better mechanical properties. International Journal of Engineering Research & Technology, 9(8), 482–486.
Ikubanni, P. P., Oki, M., Adeleke, A. A., & Omoniyi, P. O. (2021). Synthesis, physico-mechanical and microstructural characterization of Al6063/sic/pksa hybrid reinforced composites. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-94420-0
Madhukar, P., Selvaraj, N., Gujjala, R., & Rao, C. S. P. (2019). Production of high performance AA7150-1% SiC nanocomposite by novel fabrication process of ultrasonication assisted stir casting. Ultrasonics Sonochemistry, 58, 104665.
Advesh, B. (2011). Development and property evaluation of aluminum alloy reinforced with nano-ZrO2 metal matrix composites (nmmcs) for automotive applications [Doctoral dissertation, Dr. MGR Educational and Research Institute].
Kok, M. (2005). Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites. Journal of Materials Processing Technology, 161, 381–387.
Ibrahim, T. K., Yawas, D. S., Thaddaeus, J., Danasabe, B., Iliyasu, I., Adebisi, A. A., & Ahmadu, T. O. (2024). Development, modelling and optimization of process parameters on the tensile strength of aluminum, reinforced with pumice and carbonated coal hybrid composites for brake disc application. Scientific Reports, 14(1), 16999. https://doi.org/10.1038/s41598-024-67476-x
Ibrahim, T., Yawas, D. S., & Aku, S. Y. (2013). Effects of gas metal arc welding techniques on the mechanical properties of duplex stainless steel. Journal of Minerals and Materials Characterization and Engineering, 1, 222–230.
Samuel, B. O., Alabi, A. A., Lawal, S. A., Peter, E., & Ibrahim, T. K. (2024). Optimizing the effect of heat treatment on the mechanical properties (tensile strength and hardness) of Hyphaene Thebaica nut; a machine learning and Taguchi approach. Heliyon, 10(19), e38899. https://doi.org/10.1016/j.heliyon.2024.e38899
Verma, S., Kakkar, V., & Singh, H. (2022). Optimisation of cutting forces in dry turning process using Taguchi and grey relational analysis. Recent Advances in Operations Management Applications (pp. 317–334).
Kareem, A., Qudeiri, J. A., Abdudeen, A., Ahammed, T., & Ziout, A. (2021). A review on AA 6061 metal matrix composites produced by stir casting. Materials, 14(1), 175. https://doi.org/10.3390/ma14010175
Dagwa, I. M., & Adama, K. K. (2018). Property evaluation of pumice particulate-reinforcement in recycled beverage cans for Al-MMCs manufacture. Journal of King Saud University-Engineering Sciences, 30(1), 61–67.
Ibrahim, T. K., Leva, I. U., Iliyasu, I., & Yawas, D. S. (2016). Comparative analysis of neem and lubricating (85W90) oils as quenchants on the mechanical properties of gas metal arc welded duplex stainless steel. International Journal of Scientific and Engineering Research, 7(4), 1825–1836.
Gowda, B. M., Joshi, R., & Kuntanahal, R. (2020). Studies on bottom ash strengthened LM13 composite. Materials Today: Proceedings, 20, 217–221. https://doi.org/10.1016/j.matpr.2019.11.119
Usman, Y., Dauda, E. T., Abdulwahab, M., & Dodo, R. M. (2020). Effect of mechanical properties and wear behaviour on locust bean waste ash (LBWA) particle reinforced aluminium alloy (A356 alloy) composites. FUDMA Journal of Sciences (FJS), 4(1), 416–421.
Ersoy, B., Sariisik, A., Dikmen, S., & Sariisik, G. (2010). Characterization of acidic pumice and determination of its electrokinetic properties in water. Powder Technology, 197, 129–135. https://doi.org/10.1016/j.powtec.2009.09.005
Pınarcı, İ., & Kocak, Y. (2022). Hydration mechanisms and mechanical properties of pumice substituted cementitious binder. Construction and Building Materials, 335, 127528.
Ibrahim, T. K., Iliyasu, I., & Abiodun, P. C. (2024). Application of Taguchi methods and regression analysis to optimize process parameters and reinforcements for maximizing composite’s coefficient of friction for brake disc application: A statistical optimization approach. Journal of Sustainable Materials Processing and Management, 4(1), 89–105. https://publisher.uthm.edu.my/ojs/index.php/jsmpm/article/view/17768
Gencel, O. (2015). Characteristics of fired clay bricks with pumice additive. Energy and Buildings, 102, 217–224. https://doi.org/10.1016/j.enbuild.2015.05.03
Shetty, P., Vinay Atgur, V., Manavendra, G., & Naik, P. (2015). Experimental evaluation of specific heat carrying capacity of fly-ash. International Research Journal of Engineering and Technology, 2(9), 774–780.
Hoff, B. W., Dynys, F. W., Hayden, S. C., Grudt, R. O., Hilario, M. S., Baros, A. E., & Ostraat, M. L. (2019). Characterization of AlN-based ceramic composites for use as millimeter wave susceptor materials at high temperature: High temperature thermal properties of AlN:Mo with 0.25% to 4.0% Mo by volume. Materials Research Society, 1531–1542. https://doi.org/10.1557/adv.2019.142
Santhosh Kumar, B. M., Girish, D. P., Yogesha, K. B., & Jeevan, M. C. (2019). Influence of hybrid reinforcement on thermal conductivity of Al7075 based composites. Materials Research Express, 6(12). https://doi.org/10.1088/2053-1591/ab575a
Hasan, B. M., Jalaluddin Tarakka, R., Syahid, M., Amijoyo, M. A., & Anis, I. R. (2024). Thermal properties characteristic of aluminium-alumina composite for solar water heating system application. Journal of Physics: Conference Series, 2739(1), 012018. https://doi.org/10.1088/1742-6596/2739/1/012018
Cem Okumus, S., Aslan, S., Karslioglu, R., Gultekin, D., & Akbulut, H. (2012). Thermal expansion and thermal conductivity behaviors of Al-Si/SiC/graphite hybrid metal matrix composites (MMCs). Materials Science, 18(4), 341–346. https://doi.org/10.5755/j01.ms.18.4.3093
Krishna, S. A. M., Shridhar, T. N., & Krishnamurthy, L. (2015). An experimental investigation on specific heat capacity and enthalpy of Al 6061-SiC-Gr hybrid metal matrix composites using differential scanning calorimetry. Advanced Materials Research, 1105, 208–214.
Khosravi, H., Bakhshi, H., & Salahinejad, E. (2014). Effects of compocasting process parameters on microstructural. Transactions of Nonferrous Metals Society of China, 24(8), 2482–2488. https://doi.org/10.1016/S1003-6326(14)63374-4
Malau, V., Wildan, M. W., Suyitno, & Sadi. (2014). Optimization of process parameters of stir casting to maximize the hardness of Al-SiC composites by Taguchi method. International Journal of Applied Engineering Research, 9(24), 30121–30134.
Hashim, J., Looney, L., & Hashmi, M. S. J. (2001). The wettability of SiC particles by molten aluminium alloy. Journal of Materials Processing Technology, 119, 324–32.
Ibrahim, T. K., Thaddaeus, J., Popoola, C. A., Iliyasu, I., & Alabi, A. A. (2024). Improvement of wear rate properties of a brown pumice and coal ash particulates reinforced aluminum composite for automobile brake manufacturing, through optimization and modelling. Jordan Journal of Mechanical and Industrial Engineering, 81(4). https://doi.org/10.59038/jjmie/180409
Karthikeyan, B., Ramanathan, S., & Ramakrishnan, V. (2011). Specific heat capacity measurement of Al / SiCp composites by differential scanning calorimeter. Advanced Materials Research, 264–265, 669–674. https://doi.org/10.4028/www.scientific.net/AMR.264-265.669
Dan-Asabe, B., Yaro, S. A., Yawas, D. S., & Aku, S. Y. (2019). Statistical modeling and optimization of the flexural strength, water absorption and density of a doum palm-Kankara clay filler hybrid composite. Journal of King Saud University-Engineering Sciences, 31(4), 385–394.
Sivaiah, P., & Chakradhar, D. (2019). Modeling and optimization of sustainable manufacturing process in machining of 17-4 PH stainless steel. Measurement, 134, 142–152.
Downloads
Published
How to Cite
Issue
Section
License
Copyright of articles that appear in Jurnal Mekanikal belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions or any other reproductions of similar nature.