ASSESSMENT OF LATTICE BOLTZMANN SIMULATION SCHEME IN PREDICTING TWO-PHASE (SOLID-FLUID) FLOW

Authors

  • C. S. N. Azwadi C. S. N. Azwadi Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
  • M. S. Nor Hamizan M. S. Nor Hamizan Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
  • N. M. Ammar N. M. Ammar Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

Keywords:

Lattice Boltzmann, second Newton’s law, solid particle, lid-driven cavity flow.

Abstract

In this paper, the coupled lattice Boltzmann simulation scheme with second Newton’s law is proposed to predict the behavior of a solid particle in lid-driven cavity flow. The lattice Boltzmann scheme alone is first performed to characterize the fluid flow at Reynolds number of 100 and 400. Comparisons with the benchmark results demonstrate the applicability of the method to reproduce complex fluid structure in the system. The same density of buoyant particle is then inserted in the cavity, and its transient orbit at Reynolds number of 130 is plotted. Although the initial trajectories are found slightly deviate from the experimental results due to initial transient error, the general pattern is considered to be in close agreement with those published in the literatures.

References

S. J. Tsorng, H. Capart, D. C. Lo, J. S. Lai and D. L. Young, 2008. Behaviour of macroscopic rigid spheres in lid-driven cavity flow, Intl. J. Multiphase Flow, 34, 76-101.

P. Kosinski, A. Kosinska and A. C. Hoffmann, 2009. Simulation of solid particles behaviour in a driven cavity flow, Powder Tech., 191, 327-339.

C. G. Ilea, P. Losinski, A. C. Hoffmann, 2008. Three-Dimensional simulation of a dust lifting process with varying parameters, Intl. J. Multiphase Flow, 34, 869-878.

C. G. Ilea, P. Losinski, A. C. Hoffmann, 2008. Simulation of a dust lifting process with rough walls, Chem. Eng. Sci., 63, 3864-3876.

C. S. Azwadi and T. Takahiko, 2006. Simplified Thermal Lattice Boltzmann in Incompressible Limit, Intl. J. Mod. Phys. B, 20, 2437-2449.

S. Chen, D. Martinez and W. H. Mattaeus, 1994. Lattice Boltzmann magnetohydrodynamics, Phys. of Plasmas, 1 1850-1860.

N. S. Martys and H. Chen, 1996. Simulation of multicomponent fluids in complex three dimensional geometries by the lattice Boltzmann method, Phys. Rev. A, 53, 743-750.

U. Frish, B. Hasslacher and Y. Pomeau, 1986. Lattice Gas Automata for the NavierStokes equation, Phys. Rev. Lett., 56, 1505-1509.

G. McNamara and B. Alder, 1993. Analysis of the lattice Boltzmann treatment of hydrodynamic, Phys. A, 194, 218-228.

X. Shan, 1997. Simulation of Rayleigh Bernard convection using a Lattice Boltzmann method, Phys. Rev. E, 55, 2780-2788.

X. He, S. Chen and G. D. Doolen, 1998. A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comp. Phys., 146, 282-300.

C. S. Azwadi and T. Takahiko, 2007. Three-dimensional Thermal lattice Boltzmann simulation of natural convection in a cubic cavity, Intl. J. Mod. Phys. B, 21, 87-96.

C. S. Azwadi and T. Takahiko, 2008. Simplified finite difference thermal lattice Boltzmann method, Intl. J. Mod. Phys. B, 22, 3865-3876.

U. Ghia, K. N. Ghia and C. Y. Shin. 1982. High-Re solutions for Incompressible Flow using the Navier-Stokes Equations and a Multigrid Method, J. Comp.Phys. 48, 387-411

Downloads

Published

2018-04-04

How to Cite

C. S. N. Azwadi, C. S. N. A., M. S. Nor Hamizan, M. S. N. H., & N. M. Ammar, N. M. A. (2018). ASSESSMENT OF LATTICE BOLTZMANN SIMULATION SCHEME IN PREDICTING TWO-PHASE (SOLID-FLUID) FLOW. Jurnal Mekanikal, 31(2). Retrieved from https://jurnalmekanikal.utm.my/index.php/jurnalmekanikal/article/view/99

Issue

Section

Mechanical

Similar Articles

<< < 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.