POTENTIAL NATURAL FIBER POLYMER COMPOSITES FOR WIND TURBINE BLADE DEVELOPMENT: A SHORT REVIEW

Authors

  • Bassey Samuel Ahmadu Bello University
  • Malachy Sumaila Department of Mechanical Engineering, Faculty of Engineering, Ahmadu Bello University, Zaria, Kaduna
  • Bashar Dan-Asabe Department of Mechanical Engineering, Faculty of Engineering, Ahmadu Bello University, Zaria, Kaduna

DOI:

https://doi.org/10.11113/jm.v45.450

Keywords:

Natural Fiber, Wind Turbine Blades, Energy, Composites, Ecofriendly Materials

Abstract

The wind turbine blade which is currently developed with carbon and glass fiber-filled composites, is a key part of the wind turbine system used in the production of wind energy. Present-day realities have necessitated the need for the replacement of these materials which are costly, scarce, non-biodegradable, non-eco-friendly, with natural fibers which are more available, and eco-friendly, hence, this research. This study gives an overview of the wind energy industry, the systems of production with the blades in particular. It describes the attributes of natural fibers, their composites, and hybrids of the natural fibers, their defects, and their possible application in the development of wind turbine blades.

References

Abbas, Q., Khan, A. R., Bashir, A., Alemzero, D. A., Sun, H., Iram, R., & Iqbal, N. (2020). Scaling up renewable energy in Africa: measuring wind energy through econometric approach. Environmental Science and Pollution Research, 27(29), 36282-36294.

Akil H. M., Santulli C., Sarasini F., Tirillò J., Valente T. (2014) Environmental effects on the mechanical behaviour of pultruded jute/glass fiber-reinforced polyester hybrid composites. Composites Science and Technology, 94, 62–70.https://doi.org/10.1016/j.compscitech.2014.01.017

Akil H. M., Santulli C., Sarasini F., Tirillò J., Valente T.(2014) Environmental effects on the mechanical behaviour of pultruded jute/glass fiber-reinforced polyester hybrid composites. Composites Science and Technology, 94, 62–70. https://doi.org/10.1016/j.compscitech.2014.01.017

Alabi, A. A., Samuel, B. O., Peter, M. E., & Tahir, S. M. (2022). Optimization and modelling of the fracture inhibition potential of heat treated doum palm nut fibres in phenolic resin matrix polymer composite: a Taguchi approach. Functional Composites and Structures, 4(1), 015004.

Alexander J., Churchill S. J. E. (2017) Mechanical characterization of baslat based natural hybrid composites for aerospace applications. IOP Conference Series: Materials Science and Engineering, 197, 012008/1–012008/8. https://doi.org/10.1088/1757-899X/197/1/012008

Andrew, Cardien (2008) "Fiber glass wind turbine blade Manufacturing"

Arrakhiz F. Z., Benmoussa K., Bouhfid R., Qaiss A. (2013) Pine cone fiber/clay hybrid composite: Mechanical and thermal properties. Materials and Design, 50, 376–381. https://doi.org/10.1016/j.matdes.2013.03.033

Asheesh Kumar & Anshuman Srivastava (2017) Preparation and Mechanical Properties of Jute Fiber Reinforced Epoxy Composites. Industrial Engineering & Management. 6:4 DOI: 10.4172/2169-0316.1000234

Ashik, K. & Sharma, Ramesh. (2015). A Review on Mechanical Properties of Natural Fiber Reinforced Hybrid Polymer Composites. Journal of Minerals and Materials Characterization and Engineering. 03. 420-426. 10.4236/jmmce.2015.35044.

Asim, M., Abdan, K., Jawaid, M., Nasir, M., Dashtizadeh, Z., Ishak, M.R., Hoque, E. M., (2015) A Review on Pineapple Leaves Fiber and Its Composites. International Journal of Polymer Science. Volume 2015. Article ID 950567. Athijayamani, A., Thiruchitrambalam, M., Natarajan, U., & Pazhanivel, B. (2009). Effect of moisture absorption on the mechanical properties of randomly oriented natural fibers/polyester hybrid composite. Materials Science and Engineering: A, 517(1-2), 344–353.doi:10.1016/j.msea.2009.04.027

Baley C, Bourmaud A. (2014) Average tensile properties of French elementary flax fibers. Mater Lett. 122:159–61.

Beg, M.D.H., Pickering, K.L. (2008) Mechanical performance of Kraft fiber reinforced polypropylene composites: influence of fiber length, fiber beating and hygrothermal ageing. Composites Part A. 39(11):1748–55.

Bledzki, A.K. and Gassan, J. (1999) Composites reinforced with cellulose based fibers. Prog. Polym. Sci. 24:221-274.

Bledzki, A.K., and Gassan, J. (1999) Composites reinforced with cellulose based fibers. Prog. Polym. Sci. 24:221-274.

Bledzki, A.K., Mamun, A.A., Jaszkiewicz, A., Erdmann, K. (2010) Polypropylene composites with enzyme modified abaca fiber. Compos. Sci. Technol.70 (5):854–60.

Brøndsted, P., Lilholt, H. and Lystrup, A. (2005) ‘Composite materials for wind power turbine blades’, Annual Reviews of Materials Research, August, Vol. 35, pp.505–538.

Cao Y., Sakamoto S., Goda K. (2007) Effects of heat and alkali treatments on mechanical properties of kenaf fibers. Presented at 16th international conference on composite materials, 8–13 July, Kyoto, Japan.

Colberg, M., Sauerbier, M. Kunstst (1997) Plast Europe Reinforced Plastics, 41(11), 22.

Debnath, Kishore & Singh, Inderdeep & Dvivedi, Akshay & Kumar, Pradeep. (2013). Natural Fiber-Reinforced Polymer Composites for Wind Turbine Blades: Challenges and Opportunities.

Dhiman, S. H., Deb, D. (2020) Fundamentals of Wind Turbine and Wind Farm Control Systems. In: Decision and Control in Hybrid Wind Farms. Studies in Systems, Decision and Control, vol 253. Springer, Singapore. doi.org/10.1007/978-981-15-0275-0_1

Dittenber DB, GangaRao HV. (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos Appl Sci Manuf ;43(8): 1419–29.

Dolf Gielen, Francisco Boshell, Deger Saygin, Morgan D. Bazilian, Nicholas Wagner, Ricardo Gorini, (2019) The role of renewable energy in the global energy transformation. Energy Strategy Reviews. Vol. 24. Pages 38-50. ISSN 2211-467X. https://doi.org/10.1016/j.esr.2019.01.006.http://www.sciencedirect.com/science/article/pii/S2211467X19300082.

Essabir H., Boujmal R., Bensalah M. O., Rodrigue D., Bouhfid R., el kacem Qaiss A. (2016) Mechanical and thermal properties of hybrid composites: Oil-palm fiber/clay reinforced high density polyethylene. Mechanics of Materials, 98, 36–43. https://doi.org/10.1016/j.mechmat.2016.04.008

European Wind Energy Association. (2009). The economics of wind energy. EWEA.

Ganster J, Fink H-P. (2006) Novel cellulose fiber reinforced thermoplastic materials. Cellulose. 13(3):271–80.

Gardiner, G. (2012) ‘Thermoplastic wind blades: to be or not?’, Composites Technology, April, Vol. 18, No. 2, pp.30–38. Gholampour, A., & Ozbakkaloglu, T. (2019). A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. Journal of Materials Science.doi:10.1007/s10853-019-03990-y

Goda, K., Sreekala, M., Gomes, A., Kaji, T., Ohgi, J. (2006) Improvement of plant based natural fibers for toughening green composites—effect of load application during mercerization of ramie fibers. Composites Part A. 37(12): 2213–20.

González, L. G., Figueres, E., Garcerá, G., & Carranza, O. (2010). Maximum-power-point tracking with reduced mechanical stress applied to wind-energy-conversion-systems. Applied Energy, 87(7), 2304-2312.

Gupta, Manoj & Srivastava, Ravindra. (2016). Properties of sisal fiber reinforced epoxy composite. Indian Journal of Fiber and Textile Research. 41. 235-241.

Harzallah, Omar & Benzina, H. & Drean, Jean-Yves. (2010). Physical and Mechanical Properties of Cotton Fibers: Single-fiber Failure. Textile Research Journal - TEXT RES J. 80. 1093-1102. 10.1177/0040517509352525.

Hasur, M.V., Vaidya, U.K., Ulven, C. and Jee-lani, S. (2004) Performance of stitched/unstitched woven carbon/epoxy composites under high velocity impact loading. Compos. Struct. 64:455-466.

He, D. X., Li, Y. (2020) Overview of Worldwide Wind Power Industry. In: Strategies of Sustainable Development in China’s Wind Power Industry. Springer, Singapore.

Holbery J, Houston D. (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM (J Occup Med). 58(11):80–6.

Ickering K.L., Abdalla, A., Ji, C., McDonald, A.G., Franich, R.A. (2003) The effect of silane coupling agents on radiata pine fiber for use in thermoplastic matrix composites. Composites Part A 2003;34(10):915–26.

IRENA (2019), Future of wind: Deployment, investment, technology, grid integration and socio-economic aspects (A Global Energy Transformation paper), International Renewable Energy Agency, Abu Dhabi.

Islam M., Talib Z., Azad A., Kaiser A. (2015) Chemical Modifications and Properties of Coir Fibers Biocomposites. In: Hakeem K., Jawaid M., Y. Alothman O. (eds) Agricultural Biomass Based Potential Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-13847-3_23

Islam, S. M., Azmy, S., Almamun A. (2019) American Journal of Engineering Research (AJER). E-ISSN: 2320-0847 p-ISSN: 2320-0936. Volume-8, Issue-2, pp-01-06

Jesuarockiam, Naveen & Jawaid, Mohammad & Amuthakannan, & Muthukumar, Chandrasekar. (2018). Mechanical and physical properties of sisal and hybrid sisal fiber-reinforced polymer composites. 10.1016/B978-0-08-102292-4.00021-7.

John MJ, Anandjiwala RD. (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos. 29(2):187–207.

John, Maya & Anandjiwala, Rajesh. (2008). Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polymer Composites. 29. 187 - 207. 10.1002/pc.20461.

Jumaidin R., Sapuan S. M., Jawaid M., Ishak M. R., Sahari J. (2017) Thermal, mechanical, and physical properties of seaweed/sugar palm fibre reinforced thermoplastic sugar palm starch/agar hybrid composites. International Journal of Biological Macromolecules, 97, 606–615. https://doi.org/10.1016/j.ijbiomac.2017.01.079

Kalkanis, K., Psomopoulos, C. S., Kaminaris, S., Ioannidis, G., & Pachos, P. (2019). Wind turbine blade composite materials - End of life treatment methods. Energy Procedia, 157, 1136–1143. doi:10.1016/j.egypro.2018.11.281 Kausar, A. (2020). Progress in green nanocomposites for high-performance applications. Materials Research Innovations, 1–13.doi:10.1080/14328917.2020.1728489.

Kölln, Klaas & Grotkopp, Ingo & Burghammer, Manfred & Roth, Stephan & Funari, Sergio & Dommach, Martin & Müller, Martin. (2005). Mechanical properties of cellulose fibers and wood. Orientational aspects in situ investigated with synchrotron radiation. Journal of synchrotron radiation. 12. 739-44. 10.1107/S0909049505011714.

Ku, H., Wang, H., Pattarachaiyakoop, N., Trada, M. (2010) "A review on tensile Properties of natural fiber reinforced polymer composites." Compoites Part B: Engineering. 42(4) 856-873, ISSN 1359-8368, https://doi.org/10.1016/j.compositesb.2011.01.010.

Kumar, R., Rai, B., Kumar, G. (2019) A simple approach for the synthesis of cellulose nanofiber reinforced chitosan/PVP bio nanocomposite film for packaging. Journal of Polymer and Environment 27:2963–2973.

Kureemun U., Ravandi M., Tran L. Q. N., Teo W. S., Tay T. E., Lee H. P. (2018) Effects of hybridization and hybrid fibre dispersion on the mechanical properties of woven flax-carbon epoxy at low carbon fibre volume fractions. Composites Part B: Engineering, 134, 28–38. https://doi.org/10.1016/j.compositesb.2017.09.035

Laly, A.P., and Sabu, T. (2003) Polarity parameters and dynamic mechanical behaviour of chemically modified banana fiber reinforced polyester com-posites. Comp. Sci. Tech. 63:1231-1240.

Maldas, D., Kokta, B. V., (1993) Performance of hybrid reinforcement in PVC composites. J. Test. Eval. 2:68-72.

Mallick, P.K. (1993) Fiber reinforced composites. Marcel Dekker, New York.

Marta Fortea-Verdejo, Elias Bumbaris, Christoph Burgstaller, Alexander Bismarck & Koon-Yang Lee (2017) Plant fiber-reinforced polymers: where do we stand in terms of tensile properties?, International Materials Reviews, 62:8, 441-464, DOI:10.1080/09506608.2016.1271089

Maslinda A. B., Majid M. S. A., Ridzuan M. J. M., Afendi M., Gibson A. G. (2017) Effect of water absorption on the mechanical properties of hybrid interwoven cellulosiccellulosic fibre reinforced epoxy composites. Composite Structures, 167, 227–237. https://doi.org/10.1016/j.compstruct.2017.02.023

Milborrow, D. (2020) Wind Energy Development. In: Sayigh A., Milborrow D. (eds) The Age of Wind Energy. Innovative Renewable Energy. Springer, Cham. DOI: doi.org/10.1007/978-3-030-26446-8_2.

Mishnaevsky, L., Branner, K., Petersen, H. N., Beauson, J., McGugan, M., & Sørensen, B. F. (2017). Materials for Wind Turbine Blades: An Overview. Materials (Basel, Switzerland), 10(11), 1285. https://doi.org/10.3390/ma10111285

Mochane, M. J. , Mokhena, T. C., Mokhothu, T. H., Mtibe, A., Sadiku1, E. R., Ray, S. S., Ibrahim, I. D., Daramola1, O. O. (2019) Recent progress on natural fiber hybrid composites for advanced applications: A review. eXPRESS Polymer Letters Vol.13, No.2. 159–198. https://doi.org/10.3144/expresspolymlett.2019.15

Mohammed, L., Ansai, M. N. M.,Pua, G., Jawaid, M., Saiful Islam, M. (2015) A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. International Journal of Polymer Science. Volume 2015, pg 15. Article ID 243947, http://dx.doi.org/10.1155/2015/243947

Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 40(7): 3941–94.

Morăraș, C., Tugui, C. A., Steigmann, R., Barsanescu, P. D., Leitoiu, B., & Goanta, V. (2020). Mechanical Testing of GFRP Composite Materials Used in Wind Turbine Blades Construction. Advanced Materials Research, 1157, 142–148. https://doi.org/10.4028/www.scientific.net/amr.1157.142

Mwaikambo, L., Ansell, M. (2002) Chemical modification of hemp, sisal, jute and kapok fibers by alkalisation. J. App. Polym. Sci. 84:2222-2234.

Ng, L. F., Dhar Malingam, S., Selamat, M. Z., Mustafa, Z., & Bapokutty, O. (2019). A comparison study on the mechanical properties of composites based on kenaf and pineapple leaf fibers. Polymer Bulletin. doi:10.1007/s00289-019-02812-0

Onea, F., Ruiz, A., & Rusu, E. (2020). An Evaluation of the Wind Energy Resources along the Spanish Continental Nearshore. Energies, 13(15), 3986. Pourrajabian, A., Dehghan, M., Javed, A., & Wood, D. (2019). Choosing an appropriate timber for a small wind turbine blade: A comparative study. Renewable and Sustainable Energy Reviews, 100, 1–8. doi:10.1016/j.rser.2018.10.010 Pradeep, A. V., Prasad, S. V. S., Suryam, L. V., & Kumari, P. P. (2019). A comprehensive review on contemporary materials used for blades of wind turbine. Materials Today: Proceedings.doi:10.1016/j.matpr.2019.07.732

Production and optimization of the modulus of elasticity, modulus of rupture, and impact energy of GLP-HDPE composite materials using the robust Taguchi technique

Rachini, A., LeTroedec, M., Peyratout, C., Smith, A. (2012) Chemical modification of hemp fibers by silane coupling agents. J. Appl. Polym. Sci.123(1):601–10.

Ramana M. V., Ramprasad S. (2017) Experimental investigation on jute/carbon fibre reinforced epoxy based hybrid composites. Materials Today: Proceedings, 4, 8654–8664. https://doi.org/10.1016/j.matpr.2017.07.214

Ratna Prasad & Rao, K.. (2011). Mechanical properties of natural fiber reinforced polyester composites: Jowar, sisal and bamboo. Materials & Design - MATER DESIGN. 32. 4658-4663. 10.1016/j.matdes.2011.03.015.

Ravi Teja, Thonangi & Duppala, Venkatarao & Lakshumu Naidu, A. & Bahubalendruni, M V A Raju. (2017). Mechanical and chemical Properties of Ramie reinforced composites and manufacturing techniques...A Review. 8.

Reinhardt, M. & Kaufmann, Jörg & Kausch, M. & Kroll, L.. (2013). PLA-Viscose-Composites with Continuous Fiber Reinforcement for Structural Applications. Procedia Materials Science. 2. 137–143. 10.1016/j.mspro.2013.02.016.

Rong M. Z., Zhang M. Q., Liu Y., Yang G. C., Zeng H. M. (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol;61(10):1437–47.

Rowel, R.M., Sanadi, A.R., Caulfield, D.F. and Jacobson, R.E. (1997) Utilization of natural fibers in composites: problems and opportunities in ligno-cellulosic-plastic composites. Eds. Leao, A., Carv-alho, F.X. and Frollini, E., USP/UNESP Publishers, Sao Paulo. pp. 23-51.

Saba N., Paridah M. T., Abdan K., Ibrahim N. A. (2016) Effect of oil palm nano filler on mechanical and morphological properties of kenaf reinforced epoxy composites. Construction and Building Materials, 123, 15–26 https://doi.org/10.1016/j.conbuildmat.2016.06.131

Saba, N., Paridah, M. T., Jawaid, M. (2015) Mechanical properties of kenaf fiber reinforced polymer composite: A review. Construction and Building Materials. Volume 76, Pages 87-96. doi.org/10.1016/j.conbuildmat.2014.11.043

Saeed, M. A., Ahmed, Z., & Zhang, W. (2020). Wind energy potential and economic analysis with a comparison of different methods for determining the optimal distribution parameters. Renewable Energy, 161, 1092-1109.

Sain, M.M., Imbert, C. and Kokta, B.V. (1993) Composites of surface treated wood fiber and re-cycled polypropylene. Angew. Makromol. Chem. 210:33-46.

Samuel, B. O., Sumaila, M., & Dan-Asabe, B. (2022a). Modeling and optimization of the manufacturing parameters of a hybrid fiber reinforced polymer composite PxGyEz. The International Journal of Advanced Manufacturing Technology, 118(5), 1441-1452.

Samuel, B. O., Sumaila, M., & Dan-Asabe, B. (2022b). Manufacturing of a natural fiber/glass fiber hybrid reinforced polymer composite (PxGyEz) for high flexural strength: An optimization approach. The International Journal of Advanced Manufacturing Technology, 119(3), 2077-2088.

Samuel, B. O., Sumaila, M., & Dan-Asabe, B. (2022c). Multi-Parameter Optimization (Grey Relational Analysis) of Cellulosic Fiber Reinforced Hybrid Polymer Composite (PxGyEz) for Offshore Pressure Vessels Development. Functional Composites and Structures.

Samuel, B., Sumaila, M., & Dan-Asabe, B. (2022d). CELLULOSIC FIBER REINFORCED HYBRID COMPOSITE (PxGyEz) OPTIMIZATION FOR LOW WATER ABSORPTION USING THE ROBUST TAGUCHI OPTIMIZATION TECHNIQUE. Jurnal Mekanikal, 45(01), 1–20. Retrieved from https://jurnalmekanikal.utm.my/index.php/jurnalmekanikal/article/view/432

Sawpan, M.A., Pickering, K.L., Fernyhough, A. (2011) Improvement of mechanical performance of industrial hemp fiber reinforced polylactide biocomposites. Composites Part A. 42(3):310–9.

Sayigh A. (2020) Introduction. In: Sayigh A., Milborrow D. (eds) The Age of Wind Energy. Innovative Renewable Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-26446-8_1.

Shah, Darshil & Schubel, Peter & Clifford, Mike. (2013). Can flax replace E-glass in structural composites? A small wind turbine blade case study. Composites Part B: Engineering. 52. 172-181. 10.1016/j.compositesb.2013.04.027.

Shahzad, A., Isaac, D. H., Alston, S. M., Mechanical Properties of Natural Composites

Suardana, Ngakan & Piao, Yingjun & Lim, Jae Kyoo & Indonesia, Bali. (2011). Mechanical properties of HEMP fibers and HEMP/PP composites: Effects of chemical surface treatment. Materials Physics and Mechanics. 11. Swolfs, Y., Verpoest, I., & Gorbatikh, L. (2018). Recent advances in fiber-hybrid composites: materials selection, opportunities and applications. International Materials Reviews, 1–35.doi:10.1080/09506608.2018.1467365

Terzi E., Kartal S., Muin M., Hassanin A., Hamouda T., Kiliҫ A., Candan Z. (2018) Biological performance of novel hybrid green composites produced from glass fibers and jute fabric skin by the VARTM process. BioResources, 13, 662–677 https://doi.org/10.15376/biores.13.1.662-677

Thomas, L., & Ramachandra, M. (2018). Advanced materials for wind turbine blade- A Review. Materials Today: Proceedings, 5(1), 2635–2640. doi:10.1016/j.matpr.2018.01.043

Thomsen, O. T. (2009). Sandwich Materials for Wind Turbine Blades — Present and Future. Journal of Sandwich Structures & Materials, 11(1), 7–26. doi:10.1177/1099636208099710

Tragoonwichian, Suchada & Yanumet, N. & Ishida, Hatsuo. (2008). A study on sisal fiber-reinforced benzoxazine/epoxy copolymer based on diamine-based benzoxazine. Composite Interfaces - COMPOS INTERFACE. 15. 321-334. 10.1163/156855408783810911.

Xia C., Shi S. Q., Cai L., Hua J. (2015) Property enhancement of kenaf fiber composites by means of vacuumassisted resin transfer molding (VARTM). Holzfor - schung, 69, 307–312. https://doi.org/10.1515/hf-2014-0054

Xia C., Wang K., Dong Y., Zhang S., Shi S. Q., Cai L., Ren H., Zhang H., Li J.(2016) Dual-functional natural-fiber reinforced composites by incorporating magnetite. Composites Part B: Engineering, 93, 221–228.https://doi.org/10.1016/j.compositesb.2016.03.016

Xia C., Zhang S., Shi S. Q., Cai L., Huang J. (2016) Property enhancement of kenaf fiber reinforced composites by in situ aluminum hydroxide impregnation. Industrial Crops and Products, 79, 131–136 https://doi.org/10.1016/j.indcrop.2015.11.037

Xie, Y., Hill, C. A. S., Xiao, Z., Militz, H., Mai, C., (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Composites Part A. 41(7):806–19.

Yahaya R., Sapuan S. M., Jawaid M., Leman Z., Zainudin E. S. (2015) Effect of moisture absorption on mechanical properties of natural fiber hybrid composite. in ‘Proceedings of the 13th International Conference on Environment, Ecosystems and Development, Kuala Lumpur, Malaysia’ 141–145.

Yallew, T. B., Kassegn, E., Aregawi, S. et al. (2020). Study on effect of process parameters on tensile properties of compression molded natural fiber reinforced polymer composites. SN Appl. Sci. 2, 338 https://doi.org/10.1007/s42452-020-2101-0

Yam, K.L., Gogoi, B.K., Lai, C.C., and Selke, S.E. (1990) Composites from compounding wood fibers with recycled high density polyethylene.Polym. Eng. Sci. 30:693-699.

Ying Du, Shengxi Zhou, Xingjian Jing, Yeping Peng, Hongkun Wu, Ngaiming Kwok (2020) Damage detection techniques for wind turbine blades: A review. Mechanical Systems and Signal Processing.Volume 141.106445.ISSN 0888-327. https://doi.org/10.1016/j.ymssp.2019.106445.(http://www.sciencedirect.com/science/article/pii/S0888327019306661).

Yükseloğlu, S. & Yoney, Hurol. (2016). The Mechanical Properties of Flax Fiber Reinforced Composites. 10.1007/978-94-017-7515-1_19.

Zhang, S. & Chen, C. & Duan, C. & Hu, H. & Li, Hailong & Li, Jianguo & Liu, Y. & Ma, X. & Stavik, J. & Ni, Y.. (2018). Regenerated cellulose by the lyocell process, a brief review of the process and properties. BioResources. 13. 1-16. 10.15376/biores.13.2.Zhang.

Downloads

Published

2023-01-05

How to Cite

Samuel, B., Malachy Sumaila, & Bashar Dan-Asabe. (2023). POTENTIAL NATURAL FIBER POLYMER COMPOSITES FOR WIND TURBINE BLADE DEVELOPMENT: A SHORT REVIEW. Jurnal Mekanikal, 45(2), 1–14. https://doi.org/10.11113/jm.v45.450

Issue

Section

Mechanical

Similar Articles

<< < 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.